Research Article
BibTex RIS Cite

Karpuzun (Citrullus Lanatus) Dış ve İç Kabuğundaki Antioksidanların Koruyucu Etkisi

Year 2019, , 1460 - 1466, 01.09.2019
https://doi.org/10.21597/jist.532824

Abstract

İnsan sağlığına faydalı olduğu bilinen karpuz (Citrullus lanatus) yaygın olarak tüketilmektedir. Çalışma, C. lanatus’un dış ve iç kabuklarının fitokimyasal bileşenleri, serbest radikal temizleme aktiviteleri ve besleyici içeriğini değerlendirmek amacıyla yapılmıştır. Bu amaçla, çalışmada karpuzun dış ve iç kabuklarından elde edilen etanol ekstraktında toplam flavonoid / fenolik içeriği ve antioksidan aktivitesi belirlendi. Antioksidan aktivite, CUPRAC, DPPH, FRAP ve potasyum tiyosiyanat yöntemi gibi in vitro deneysel yöntemle belirlenmiştir. C. lanatus dış ve iç kabuğundaki toplam fenolik ve flavonoid içeriği sırasıyla 40.5 ve 32.4 mg GAE g-1 ve 12.6 and 5.8 mg QE g -1 olarak bulunmuştur. C. lanatus dış ve iç kabuğundan elde edilen etanol ektrakt konsantrasyonu (20 μg/ml), aynı konsantrasyondaki a-tokoferolle (% 85.3) karşılaştırıldığında maksimum lipit peraksidasyonunda % 73.2 ve % 72.0 oranında inhibisyon sağladı. Sonuç olarak, dış ve iç kabuklar metal indirgeme kapasitesi ve orta derecede serbest radikal giderme aktivitesine sahip olup ve aynı zamanda lipid peroksidasyon sürecini inhibe eder. Bu nedenle, C. Lanatus'un özellikle dış kabuğu, radikal süpürücüler gibi davranan, oksidasyonu inhibe eden veya geciktiren ve lipid peroksidasyonunu geciktirerek besin maddelerinin raf ömrünü uzatan doğal bir bileşene sahip olabilir.

References

  • Abdelwahab SI, Hassan LEA, Sirat HM, 2011. Anti-Inflammatory Activities of Cucurbitacin E Isolated from Citrullus lanatus var. Citroides: Role of Reactive Nitrogen Species and Cyclooxygenase Enzyme Inhibition. Fitoterapia, 82: 1190-1197.
  • Adetutu A, Olorunnisola OS, Owoade OA, 2015. Nutritive values and antioxidant activity of Citrullus lanatus fruit extract. Food and Nutrition Sciences, 6(11): 1056.
  • Albayrak S, Aksoy A, Sagdic O, Hamzaoglu E, 2010. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chemistry: 119(1); 114-122.
  • Beaulieu JC, 2006. Effect of Cutting and Storage on Acetate and Non-Acetate Esters in Convenient, Ready to Eat Fresh-Cut Melons and Apples. HortScience, 41: 65-73.
  • Blois MS, 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181: 1199-1200.
  • Bursal E, Köksal E, Gülçin İ, 2010. In vitro Antioxidant Properties and Phenolic Content of Ginger (Zingiber officinale Rosc.). Root, 2010.
  • Catala A, 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkanals and oxidized Phospholipids active in physiological and/or pathological conditions. Chem.Phys.Lipids, 157 (1):1-11.
  • Charoensiri R, Kongkachuichai R, Suknicom S, Sungpuag P, 2009. Beta-Carotene, Lycopene and Alpha-Tocopherol Contents of Selected Thai Fruits. Food Chemistry, 113: 202-207.
  • Czinner E, Hagymási K, Blázovics A, Kéry Á, Szoke, É, Lemberkovics É, 2001. The in vitro effect of Helichrysi flos on microsomal lipid peroxidation. Journal of Ethnopharmacology, 77: 31–35.
  • Eze MO, 2006.The oxygen paradox and the place of oxygen in our understanding of life,aging,and death. Ultim.Real Meaning (URAM):stud.Med.Health.29 (1):46-61.
  • Farag RS, Badei AZ, Heweij FM, El-Baroty GSA, 1986. Antioxidant activity of some spices essential oils on linoleic acid oxidation in aqueous media. Journal of the American Oil Chemists Society, 66. 792–799.
  • Greenway HT, Pratt SG, 2001. Fruit and Vegetable Micronutrients in Diseases of the Eye. In: Watson, R., Ed., Fruits, Vegetables and Herbs in Health Promotion. CRC Press, Boca Raton.
  • Gulcin I, 2012. Antioxidant activity of food constituents: an overview. Arch Toxicol, 86(3):345-91.
  • Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY, 2010. Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1): 43-53.
  • Işık M, Dikici E, Tohma H, Köksal E, 2017. Antioxidant Activity and Total Phenolic/Flavonoid Contents of Phlomis pungens L. Hacettepe J. Biol. & Chem., 45 (3): 425–433.
  • Işık M, Korkmaz M, Bursal E, Gulcin I, Koksal E, Tohma H, 2015. Determination of antioxidant properties of Gypsophila bitlisensis bark. Int. J. Pharmacol, 11; 366-371.
  • Madsen HL, Bertelsen G, 1995, Spices as antioxidants. Trends in Food Science and Technology, 6: 271–277.
  • Okwu DE, 2004. Phytochemicals and Vitamin Content of Indigenous Species of South Eastern Nigeria. Journal of Sustainable Agriculture and the Environment, 6: 30-34.
  • Oyaizu M, 1986. Studies on products of browning reaction--antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi Japanese journal of nutrition.
  • Raza F, Gholam AG, Mohammad, HHK, 2007. Antioxidant Activity of Various Extracts of Old Tea Leaves and Black Tea Wastes (Camellia sinensis L.). Food Chemistry, 100: 231-236.
  • Ross JA and Kasum CM, 2002. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22: 19-34.
  • Sun H, Wang ZB, 2010. Effects on Exercise Endurance Capacity and Antioxidant Properties of Astragalus Membranaceus Polysaccharides (APS). Journal of Medicinal Plants Research, 4: 982-986.
  • Tiwari OP, Tripathi YB, 2007. Antioxidant properties of different fractions of Vitex negundo Linn. Food Chem., 100: 1170-1176.
  • Velioglu YS, Mazza G, Gao L, Oomah BD, 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113–4117.
  • Yadav RNS, Agarwala M, 2011. Phytochemical Analysis of Some Medicinal Plants. Journal of Phytology, 3: 10-14.
  • Young IS, Woodside JV, 2001. Antioxidants in health and disease. Journal of Clinical Pathology, 54: 176–186.

Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus)

Year 2019, , 1460 - 1466, 01.09.2019
https://doi.org/10.21597/jist.532824

Abstract

Watermelons (Citrullus lanatus) that are known to be beneficial to human health are widely consumed. The study was performed out to investigate the phytochemical components, free radical scavenging activities and nutritive contents of the outer and inner shells of C. lanatus. For this purpose, the study was determined the total flavonoid/phenolic content and antioxidant activity of ethanol extract prepared from outer and inner shells. The antioxidant activity was determined by in vitro experimental method, such as CUPRAC, DPPH, FRAP and potassium thiocyanate method. Total phenolic and flavonoid contents in outer and inner shell of C. lanatus were found to be 40.5 and 32.4 mg GAE g-1 and 12.6 and 5.8 mg QE g-1, respectively. The concentration of ethanol extract obtained from C. Lanatus outer and inner shell (20 μg/mL) has inhibition of maximum lipid peroxidation in rate % 73.2 and % 72.0 respectively compared to that of α-Tokoferol (% 85.3) at the same concentration. As a result, the outer and inner shells have metal reduction capacity and moderate free radical removal activity and also inhibited the lipid peroxidation process. Therefore, C. Lanatus's especially the outer shell may have a natural ingredient that acts as radical scavengers, inhibits or delays the oxidation and prolongs the shelf life of nutrients by delaying the lipid peroxidation.

References

  • Abdelwahab SI, Hassan LEA, Sirat HM, 2011. Anti-Inflammatory Activities of Cucurbitacin E Isolated from Citrullus lanatus var. Citroides: Role of Reactive Nitrogen Species and Cyclooxygenase Enzyme Inhibition. Fitoterapia, 82: 1190-1197.
  • Adetutu A, Olorunnisola OS, Owoade OA, 2015. Nutritive values and antioxidant activity of Citrullus lanatus fruit extract. Food and Nutrition Sciences, 6(11): 1056.
  • Albayrak S, Aksoy A, Sagdic O, Hamzaoglu E, 2010. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chemistry: 119(1); 114-122.
  • Beaulieu JC, 2006. Effect of Cutting and Storage on Acetate and Non-Acetate Esters in Convenient, Ready to Eat Fresh-Cut Melons and Apples. HortScience, 41: 65-73.
  • Blois MS, 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181: 1199-1200.
  • Bursal E, Köksal E, Gülçin İ, 2010. In vitro Antioxidant Properties and Phenolic Content of Ginger (Zingiber officinale Rosc.). Root, 2010.
  • Catala A, 2009. Lipid peroxidation of membrane phospholipids generates hydroxy-alkanals and oxidized Phospholipids active in physiological and/or pathological conditions. Chem.Phys.Lipids, 157 (1):1-11.
  • Charoensiri R, Kongkachuichai R, Suknicom S, Sungpuag P, 2009. Beta-Carotene, Lycopene and Alpha-Tocopherol Contents of Selected Thai Fruits. Food Chemistry, 113: 202-207.
  • Czinner E, Hagymási K, Blázovics A, Kéry Á, Szoke, É, Lemberkovics É, 2001. The in vitro effect of Helichrysi flos on microsomal lipid peroxidation. Journal of Ethnopharmacology, 77: 31–35.
  • Eze MO, 2006.The oxygen paradox and the place of oxygen in our understanding of life,aging,and death. Ultim.Real Meaning (URAM):stud.Med.Health.29 (1):46-61.
  • Farag RS, Badei AZ, Heweij FM, El-Baroty GSA, 1986. Antioxidant activity of some spices essential oils on linoleic acid oxidation in aqueous media. Journal of the American Oil Chemists Society, 66. 792–799.
  • Greenway HT, Pratt SG, 2001. Fruit and Vegetable Micronutrients in Diseases of the Eye. In: Watson, R., Ed., Fruits, Vegetables and Herbs in Health Promotion. CRC Press, Boca Raton.
  • Gulcin I, 2012. Antioxidant activity of food constituents: an overview. Arch Toxicol, 86(3):345-91.
  • Gülçin İ, Huyut Z, Elmastaş M, Aboul-Enein HY, 2010. Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1): 43-53.
  • Işık M, Dikici E, Tohma H, Köksal E, 2017. Antioxidant Activity and Total Phenolic/Flavonoid Contents of Phlomis pungens L. Hacettepe J. Biol. & Chem., 45 (3): 425–433.
  • Işık M, Korkmaz M, Bursal E, Gulcin I, Koksal E, Tohma H, 2015. Determination of antioxidant properties of Gypsophila bitlisensis bark. Int. J. Pharmacol, 11; 366-371.
  • Madsen HL, Bertelsen G, 1995, Spices as antioxidants. Trends in Food Science and Technology, 6: 271–277.
  • Okwu DE, 2004. Phytochemicals and Vitamin Content of Indigenous Species of South Eastern Nigeria. Journal of Sustainable Agriculture and the Environment, 6: 30-34.
  • Oyaizu M, 1986. Studies on products of browning reaction--antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi Japanese journal of nutrition.
  • Raza F, Gholam AG, Mohammad, HHK, 2007. Antioxidant Activity of Various Extracts of Old Tea Leaves and Black Tea Wastes (Camellia sinensis L.). Food Chemistry, 100: 231-236.
  • Ross JA and Kasum CM, 2002. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22: 19-34.
  • Sun H, Wang ZB, 2010. Effects on Exercise Endurance Capacity and Antioxidant Properties of Astragalus Membranaceus Polysaccharides (APS). Journal of Medicinal Plants Research, 4: 982-986.
  • Tiwari OP, Tripathi YB, 2007. Antioxidant properties of different fractions of Vitex negundo Linn. Food Chem., 100: 1170-1176.
  • Velioglu YS, Mazza G, Gao L, Oomah BD, 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113–4117.
  • Yadav RNS, Agarwala M, 2011. Phytochemical Analysis of Some Medicinal Plants. Journal of Phytology, 3: 10-14.
  • Young IS, Woodside JV, 2001. Antioxidants in health and disease. Journal of Clinical Pathology, 54: 176–186.
There are 26 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Mesut Işık 0000-0002-4677-8104

Publication Date September 1, 2019
Submission Date February 26, 2019
Acceptance Date March 21, 2019
Published in Issue Year 2019

Cite

APA Işık, M. (2019). Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus). Journal of the Institute of Science and Technology, 9(3), 1460-1466. https://doi.org/10.21597/jist.532824
AMA Işık M. Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus). Iğdır Üniv. Fen Bil Enst. Der. September 2019;9(3):1460-1466. doi:10.21597/jist.532824
Chicago Işık, Mesut. “Effect of Antioxidants As Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus)”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1460-66. https://doi.org/10.21597/jist.532824.
EndNote Işık M (September 1, 2019) Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus). Journal of the Institute of Science and Technology 9 3 1460–1466.
IEEE M. Işık, “Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus)”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 3, pp. 1460–1466, 2019, doi: 10.21597/jist.532824.
ISNAD Işık, Mesut. “Effect of Antioxidants As Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus)”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1460-1466. https://doi.org/10.21597/jist.532824.
JAMA Işık M. Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus). Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1460–1466.
MLA Işık, Mesut. “Effect of Antioxidants As Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus)”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1460-6, doi:10.21597/jist.532824.
Vancouver Işık M. Effect of Antioxidants as Preservatives in the Outer and Inner Shells of Watermelon (Citrullus Lanatus). Iğdır Üniv. Fen Bil Enst. Der. 2019;9(3):1460-6.