Research Article
BibTex RIS Cite

Yüksek Sıcaklıkta Gaz Algılaması ve IR Kaynakları İçin Dayanıklı Microhotplate Dizaynı

Year 2019, , 1351 - 1358, 01.09.2019
https://doi.org/10.21597/jist.554570

Abstract

Microhotplate’ler (MHP) yüksek sıcaklıklarda gaz algılanması, ve IR kaynağı yapımı gibi çok önemli uygulama alanlarına sahip olmasına rağmen, göreceli yüksek sıcaklıklarda çalıştırıldıklarında oluşan yüksek termal stres’lerden dolayı kısa süreli dayanaklığa sahiptirler. Bu çalışmada yüksek sıcaklıklarda düşük termal stres’e sahip bir dizaynı, spring tipi dizaynın ve termal genleşme sabitleri yakın olan malzeme seçimininin avantajlarını birleştirerek elde ettik. FEM sonuçları düşük termal stres elde edebilmesini sağlayan ana etkenin termal genleşme sabitleri yakın malzemeler seçmek olduğunu göstermiştir. SiN/Polysilicon/SiN katmanlarına ship spring tipi dizayn sayesinde 2119 K sıcaklığında 180 MPa gibi düşük termal stres FEM kullanılarak elde edilmiştir. Sıcaklığın 2076 K değerine ulaşması için gereken tepkime süresi ve güç tüketimi 200 ms ve 3.47 mW olarak hesaplanmıştır.

References

  • Ahn JY, Kim SB, Kim JH, Jang NS, Kim DH, Lee HW, Kim JM, and Kim SH, 2016. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform. IOP Journal of Micromechanics and Microengineering, 26(1):1-10
  • Barritault P, Brun M, Gidon S, Nicoletti S, 2011. Mid-IR source based on a free-standing microhotplate for autonomous CO2 sensing in indoor applications. Elsevier Sensors and Actuators A: Pyhsical, 172: 379-385
  • Cardinale GF, Tustison RW, 1992. Fracture strength and biaxial modulus measurement of plasma silicon nitride films. Elsevier Thin Solid Films, 207: 126-130
  • Chauhan VM, Hopper RH, Ali SZ, King EM, Udrea F, Oxley CH, Aylott JW, 2014. Thermo-optical characterization of fluorescent rhodamine B basedtemperature-sensitive nanosensors using a CMOS MEMSmicro-hotplate. Elsevier Sensors and Actuators B: Chemical, 192: 126-133
  • Chowdhury AKMS, Akbar SA, Kapileshwar S, Schorr JR, 2001. A rugged oxygen gas sensor with solid reference for high temperature applications. Journal of the electrochemical society, 148: G91-G94
  • Graf M, Barrettino D, Kirstein KU, Hierlemann A, 2006. CMOS microhotplate sensor system for operating temperatures up to 500. Elsevier Sensors and Actuators B: Chemical, 117: 346-352
  • Govindhan M, Sidhureddy B, Chen A, 2018. High Temperature Hydrogen Gas Sensor Based on Three-Dimensional Hierarchical Nanostructured Nickel-Cobalt Oxide. ACS Applied Nano Materials, 1: 6005-6014
  • He A, Yu J, Wei G, Chen Y, Wu H, Tang Z, 2016. Short-Time Fourier Transform and Decision Tree-Based Pattern Recognition for Gas Identification Using Temperature Modulated Microhotplate Gas Sensors. Journal of Sensors, 2016: 1-12.
  • Huang WC, Chen CN, Shen SH, Chen CC, 2009. Study of the annealing effect of low-temperature oxide on the etch rate in TMAH solutions for microheater applications. 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, 18-21 October 2009, Tainan, Taiwan
  • Liu Y, Parisi J, Sun X, Lei Y, 2014. Solid-Sate Gas Sensors for High Temperature Application – A review. RCS Journal of Material Chemistry A, 2: 9919-9943
  • Mitzner KD, Sternhagen J, Galipeau DW, 2003. Development of a micromachined hazardous gas sensor array. Elsevier Sensors and Actuators B: Chemical, 93: 92-99
  • Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran AT, Schellevis H, Creemer JF, Sarro PM, 2012. A molybdenum MEMS microhotplate for high-temperature operation. Elsevier Sensors and Actuators A: Pyhsical, 188: 173-180
  • Mo Y, Okawa Y, Inoue K, Natukawa K, 2002. Low voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas array. Sensors and Actuators A: Physical, 100: 94-101
  • Morozov O, Postnikov A, 2014. Mechanical strength study of SiO2 isolation blocks merged in silicon substrate. IOP Journal of Micromechanics and Microengineering, 25: 1-11
  • Müller L, Kapplinger I, Biermann S, Brode W, Hoffmann M, 2014. Infrared emitting nanostructures for highly efficient microhotplates” IOP Journal of Micromechanics and Microengineering. 24: 1-9
  • Noda N, Hetnarski RB, Tanigawa Y, 2003. Thermal Stresses, Second Edition, New York, USA, 493 p.
  • Peris M, Escuder-Gilabert L, 2009. A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638: 1-15
  • Richter D, Fritze H, 2013. High temperature Gas Sensor. Springer Series on Chemical Sensors and Biosensors, 1-46p.
  • Roy S, Sarkar CK, Bhattacharyya P, 2012. A highly sensitive methane sensor with nickel alloy microheater on micromachined Si substrate. Elsevier Solid-State Electronics, 76: 84-90
  • Sama J, Seifner MS, Domenech-Gil G, Santander J, Calaza C, Moreno M, Gracia I, Barth S, Romano-Rodriguez A, 2017. Low temperature humidity sensor based on Ge nanowires selectivelygrown on suspended microhotplates. Elsevier Sensors and Actuators B: Chemical, 243: 669-677
  • Schwebel T, Fleischer M, Meixner H, 2000. A selective, temperature compensated O2 sensor based on Ga2O3 thin films. Elsevier Sensors and Actuators B: Chemical, 65: 176-180
  • Sharpe WN, Yuan JB, Vaidyanathan R, 1997. Measurements of Young’s modulus poisson’s ratio, and tensile strength of polysilicon. Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, 26-30 January 1997, Nagoya, Japan
  • Silvestri C, Riccio M, Poelma RH, Morana B, Vollebregt S, Santagata F, Irace A, Zhang GQ and Sarro PM, 2016. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis. RCS Nanoscale, 15:1-10
  • Steinhauer S, Chapelle A, Menini P, Sowwan M , 2016. Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application. ACS Sensors, 1: 503-507.
  • Yamazoe N, 2005. Toward innovations of gas sensor technology. Elsevier Sensors and Actuators B: Chemical, 108: 2-14
  • Yu S, Gulari E, Kanicki J, 1996. Selective deposition of polycrystalline silicon thing films at low temperature by hot wire chemical vapor deposition. Applied Physics Letters, 68: 2681-2683.

Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source

Year 2019, , 1351 - 1358, 01.09.2019
https://doi.org/10.21597/jist.554570

Abstract

While Microhotplates (MHPs) keeps very important place in many critical applications such as high temperature gas sensing and building IR source, they still suffer from short term reliability due to high thermal stress at relatively high temperatures. Here we demonstrate low thermal stress design at high temperatures by combining the advantages of spring type structure and compatible materials in terms of thermal expansion constant. FEM results demonstrated that, the main mechanism behind achieving low thermal stress is using compatible materials. A low thermal stress of 180 MPa at 2119 K was achieved by using SiN/Polysilicon/SiN stack with a spring type design via FEM tool. The response time required to reach 2076 K was calculated as 200 ms with 3.47mW power consumption.

References

  • Ahn JY, Kim SB, Kim JH, Jang NS, Kim DH, Lee HW, Kim JM, and Kim SH, 2016. A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform. IOP Journal of Micromechanics and Microengineering, 26(1):1-10
  • Barritault P, Brun M, Gidon S, Nicoletti S, 2011. Mid-IR source based on a free-standing microhotplate for autonomous CO2 sensing in indoor applications. Elsevier Sensors and Actuators A: Pyhsical, 172: 379-385
  • Cardinale GF, Tustison RW, 1992. Fracture strength and biaxial modulus measurement of plasma silicon nitride films. Elsevier Thin Solid Films, 207: 126-130
  • Chauhan VM, Hopper RH, Ali SZ, King EM, Udrea F, Oxley CH, Aylott JW, 2014. Thermo-optical characterization of fluorescent rhodamine B basedtemperature-sensitive nanosensors using a CMOS MEMSmicro-hotplate. Elsevier Sensors and Actuators B: Chemical, 192: 126-133
  • Chowdhury AKMS, Akbar SA, Kapileshwar S, Schorr JR, 2001. A rugged oxygen gas sensor with solid reference for high temperature applications. Journal of the electrochemical society, 148: G91-G94
  • Graf M, Barrettino D, Kirstein KU, Hierlemann A, 2006. CMOS microhotplate sensor system for operating temperatures up to 500. Elsevier Sensors and Actuators B: Chemical, 117: 346-352
  • Govindhan M, Sidhureddy B, Chen A, 2018. High Temperature Hydrogen Gas Sensor Based on Three-Dimensional Hierarchical Nanostructured Nickel-Cobalt Oxide. ACS Applied Nano Materials, 1: 6005-6014
  • He A, Yu J, Wei G, Chen Y, Wu H, Tang Z, 2016. Short-Time Fourier Transform and Decision Tree-Based Pattern Recognition for Gas Identification Using Temperature Modulated Microhotplate Gas Sensors. Journal of Sensors, 2016: 1-12.
  • Huang WC, Chen CN, Shen SH, Chen CC, 2009. Study of the annealing effect of low-temperature oxide on the etch rate in TMAH solutions for microheater applications. 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, 18-21 October 2009, Tainan, Taiwan
  • Liu Y, Parisi J, Sun X, Lei Y, 2014. Solid-Sate Gas Sensors for High Temperature Application – A review. RCS Journal of Material Chemistry A, 2: 9919-9943
  • Mitzner KD, Sternhagen J, Galipeau DW, 2003. Development of a micromachined hazardous gas sensor array. Elsevier Sensors and Actuators B: Chemical, 93: 92-99
  • Mele L, Santagata F, Iervolino E, Mihailovic M, Rossi T, Tran AT, Schellevis H, Creemer JF, Sarro PM, 2012. A molybdenum MEMS microhotplate for high-temperature operation. Elsevier Sensors and Actuators A: Pyhsical, 188: 173-180
  • Mo Y, Okawa Y, Inoue K, Natukawa K, 2002. Low voltage and low-power optimization of micro-heater and its on-chip drive circuitry for gas array. Sensors and Actuators A: Physical, 100: 94-101
  • Morozov O, Postnikov A, 2014. Mechanical strength study of SiO2 isolation blocks merged in silicon substrate. IOP Journal of Micromechanics and Microengineering, 25: 1-11
  • Müller L, Kapplinger I, Biermann S, Brode W, Hoffmann M, 2014. Infrared emitting nanostructures for highly efficient microhotplates” IOP Journal of Micromechanics and Microengineering. 24: 1-9
  • Noda N, Hetnarski RB, Tanigawa Y, 2003. Thermal Stresses, Second Edition, New York, USA, 493 p.
  • Peris M, Escuder-Gilabert L, 2009. A 21st century technique for food control: Electronic noses. Analytica Chimica Acta, 638: 1-15
  • Richter D, Fritze H, 2013. High temperature Gas Sensor. Springer Series on Chemical Sensors and Biosensors, 1-46p.
  • Roy S, Sarkar CK, Bhattacharyya P, 2012. A highly sensitive methane sensor with nickel alloy microheater on micromachined Si substrate. Elsevier Solid-State Electronics, 76: 84-90
  • Sama J, Seifner MS, Domenech-Gil G, Santander J, Calaza C, Moreno M, Gracia I, Barth S, Romano-Rodriguez A, 2017. Low temperature humidity sensor based on Ge nanowires selectivelygrown on suspended microhotplates. Elsevier Sensors and Actuators B: Chemical, 243: 669-677
  • Schwebel T, Fleischer M, Meixner H, 2000. A selective, temperature compensated O2 sensor based on Ga2O3 thin films. Elsevier Sensors and Actuators B: Chemical, 65: 176-180
  • Sharpe WN, Yuan JB, Vaidyanathan R, 1997. Measurements of Young’s modulus poisson’s ratio, and tensile strength of polysilicon. Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, 26-30 January 1997, Nagoya, Japan
  • Silvestri C, Riccio M, Poelma RH, Morana B, Vollebregt S, Santagata F, Irace A, Zhang GQ and Sarro PM, 2016. Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis. RCS Nanoscale, 15:1-10
  • Steinhauer S, Chapelle A, Menini P, Sowwan M , 2016. Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application. ACS Sensors, 1: 503-507.
  • Yamazoe N, 2005. Toward innovations of gas sensor technology. Elsevier Sensors and Actuators B: Chemical, 108: 2-14
  • Yu S, Gulari E, Kanicki J, 1996. Selective deposition of polycrystalline silicon thing films at low temperature by hot wire chemical vapor deposition. Applied Physics Letters, 68: 2681-2683.
There are 26 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Hasan Göktaş 0000-0002-2195-9531

Publication Date September 1, 2019
Submission Date April 16, 2019
Acceptance Date June 25, 2019
Published in Issue Year 2019

Cite

APA Göktaş, H. (2019). Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Journal of the Institute of Science and Technology, 9(3), 1351-1358. https://doi.org/10.21597/jist.554570
AMA Göktaş H. Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Iğdır Üniv. Fen Bil Enst. Der. September 2019;9(3):1351-1358. doi:10.21597/jist.554570
Chicago Göktaş, Hasan. “Reliable Mircohotplate Design for High Temperature Gas Sensing and IR Source”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1351-58. https://doi.org/10.21597/jist.554570.
EndNote Göktaş H (September 1, 2019) Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Journal of the Institute of Science and Technology 9 3 1351–1358.
IEEE H. Göktaş, “Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source”, Iğdır Üniv. Fen Bil Enst. Der., vol. 9, no. 3, pp. 1351–1358, 2019, doi: 10.21597/jist.554570.
ISNAD Göktaş, Hasan. “Reliable Mircohotplate Design for High Temperature Gas Sensing and IR Source”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1351-1358. https://doi.org/10.21597/jist.554570.
JAMA Göktaş H. Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Iğdır Üniv. Fen Bil Enst. Der. 2019;9:1351–1358.
MLA Göktaş, Hasan. “Reliable Mircohotplate Design for High Temperature Gas Sensing and IR Source”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1351-8, doi:10.21597/jist.554570.
Vancouver Göktaş H. Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Iğdır Üniv. Fen Bil Enst. Der. 2019;9(3):1351-8.