Research Article
BibTex RIS Cite

The Investigation of Frequency Dependent Electrical Characteristics Of Au/C20H12/n-Si (MPS) Structure

Year 2020, , 179 - 189, 01.03.2020
https://doi.org/10.21597/jist.600490

Abstract

In this study, C20H12 (perylene) thin film interfacial layer was deposited on n-Si using spin coating method. The capacitance-voltage (C-V) and conductance voltage characteristics (G/-V) of Au/C20H12/n-Si (metal/perylen/semiconductor) structure were investigated in the frequency and voltage ranges of 200 kHz-3 MHz and ±6V, respectively. Experimental results show that the main electrical parameters such as the barrier height, series resistance (Rs) and interface states (Nss) were found strongly function of the voltage and frequency. The C-V plots have an anomalous peak and negative capacitance behavior was observed at high frequencies. In addition, voltage-dependent change profiles of the resistance (Ri) and interface states (Nss) were obtained using Nicollian and Brews method and Hill Coleman methods of the these structures using, respectively. The Rs plots give a peak for each frequency and the magnitude of this peak decreases with increasing frequency. The values of Nss also decrease exponentially with increasing frequency. Obtained experimental results were observed to be very effective on the C-V and G/-V of the Rs and Nss values.

References

  • Altindal Ş, Parlaktürk F, Tataroǧlu A, Parlak M, Sarmasov SN, Agasiev AA, 2008. The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Vacuum, 82 (11): 1246-1250.
  • Arslan E, Şafak Y, Altındal Ş, Kelekçi O, Özbay E, 2010. Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. Journal of Non-Crystalline Solids, 356 (20-22): 1006-1011.
  • Asir S, Demir AS, Icil H, 2010. Efficient Synthesis of New Unsymmetrically Substituted Chiral Naphthalene and Perylene Diimides: Their Photophysical, Electrochemical, Chiroptical and Intramolecular Charge Transfer Properties. Dyes and Pigments, 84: 1-13.
  • Bengi S, Bülbül MM, 2013. Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Current Applied Physics, 13: 1819-1825.
  • Bilkan Ç, Zeyrek S, San SE, Altındal Ş, 2015. A compare of electrical characteristics in Al/p-Si (MS) and Al/C20H12/p-Si (MPS) type diodes using current–voltage (I–V) and capacitance–voltage (C–V) measurements. Materials Sicence in Semiconductor Processing, 32:137-144.
  • Bilkan Ç, Gümüş A, Altındal Ş, 2015. The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs). Materials Sicence in Semiconductor Processing, 39:484-491.
  • Bülbül MM, Zeyrek S, Altındal Ş, Yüzer H, 2006. On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 83 (3): 577-581.
  • Chand S, Kumar J, 1995. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si (111) Schottky diodes in a wide temperature range. Semiconductor Science and Technology, 10: 1680-1688.
  • Chattopadhyay P, Raychaudhuri B, 1993. Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid State Electronics, 36 (4): 605-610. Cheung SK, Cheung NW, 1986. Comparison of Parameter Extraction Tecniques for SiC Schottky Diodes. Applied Physics Letters, 49: 85-87.
  • Çakar M, Yıldırım N, Karataş Ş, Temirci C, Turut A, 2006. Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101/n-Si and Sn/rhodamine-101/p-Si Schottky barrier diodes. Journal of Applied Physics, 100 (7): 74505-74510.
  • Çetinkaya HG, 2018. Frequency and voltage dependent profile of dielectric parameters and electric modulus for Al/(HgS-PVA)/p-Si Capacitor via impedance Spectroscopy method. Journal of Nanoelectronics and Optoelectronics, 13(3): 421-427.
  • Çetinkaya HG, 2017. Aynı Şartlarda Hazırlanmış Al/Bi3Ti4O12/n-Si (MFS) diyotların (60 Adet) Engel Yükseklikleri İle İdealite Faktörlerindeki Dağılım. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(1): 89-96.
  • Ershov M, Liu HC, Li L, Buchanan M, Wasilewski ZR, Jonscher AK, 1998. Negative capacitance effect in semiconductor devices. IEEE Transactions on Electron Devices, 45: 2196-2205.
  • Ehrenfreund E, Lungenschmined C, Dennler G, Neugebauer H, Sariciftci NS, 2007. Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. , Applied Physics Letters, 91: 012112-3.
  • Güllü Ö, Aydoğan Ş, Türüt A, 2008. Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23 (7): 075005:1-5.
  • Güllü Ö, Türüt A, 2009. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. Journal of Applied Physics, 106 (10): 103717-103722.
  • Hill Coleman WA, Coleman CC, 1980. A single-frequency approximation for interface-state density determination. Solid State Electronics, 23: 987-993.
  • Jones BK, Santana J, McPherson M, 1988. Negative capacitance effect in semiconductor diodes. Solid State Communication, 107: 47-50.
  • Karabulut A, 2018. Dielectric Characterization of Si-Based Heterojunction with TiO2 Interfacial Layer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3): 119-129.
  • Kaya A, Zeyrek S, San SE, Altındal Ş, 2014. Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range. Chinese Physics B, 23(1): 018506.
  • Korucu D, Turut A, Altındal Ş, 2013. The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range. Current Applied Physics, 13: 1101-1108.
  • Nagao Y, 1997. Synthesis and properties of perylene pigments. Progress in Organic Coatings, 31: 43-49.
  • Nicollian EH, Brews JR, 1982. MOS Physics and Technology. John Wiley & Sons, pp. 40-175, 222-226, 423-439, New York-USA
  • Norde H, 1979. A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50 (7): 5052-5053.
  • Orak İ, Koçyiğit A, 2016. The Electrical Characterization Effect of Insulator Layer between Semiconductor and Metal, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(3): 57-67.
  • Rhoderick EH, Williams RH, 1988. Metal Semicondutor Contacts. Oxford Press, pp. 257-264, New York-USA.
  • Sato K, Yasamura Y, 1985. Study of forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 58 (9): 3655-3658.
  • Seo HS, An MJ, Zhang Y, Choi JH, 2010. Characterization of perylene and tetracene-based ambipolar light-emitting field-effect transistors. The Journal of Physical Chemistry C, 114 (13): 6141-6147.
  • Sze SM, 1981. Physics of Semiconductor Devices 2nd edition. John Wiley & Sons, pp. 362-390, New York-USA.
  • Sharma BL, 1984. Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Plenum Press, pp. 1-3, New York-USA.
  • Tanrıkulu EE, Demirezen S, Altındal Ş, Uslu İ, 2018. On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. Journal of Materials Science: Materials in Electronics, 29: 2890-2898.
  • Taşçıoğlu İ, Aydemir U, Altındal Ş, 2010. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer. Journal of Applied Physics, 108: 6 064506-064511.
  • Werner J, Levi AFJ, Tung RT, Anzlowar M, Pinto M, 1988. Origin of the Excess Capacitance at Intimate Schottky Contacts. Physical Review Letters, 60 (1): 53-56.
  • Yalçın M, Yakuphanoğlu F, 2019. Voltage and frequency dependence of negative capacitance behavior in a Graphene-TiO2 nanocomposite photoanode based on quantum dot sensitized solar cells. Optik, 183: 1099-1105.
  • Yang L, Wang M, Chen H, 2008. Synthesis, electrochemical, and spectroscopic properties of soluble perylene monoimide diesters. Tetrahedron, 64 (22): 5404-5409.
  • Yerişkin SA, 2019. Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms (CMs) in the Au/n-Si (MS) structures at room temperature. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2): 835-846.
  • Zeyrek S, Acaroğlu E, Altındal Ş, Birdoğan S, Bülbül MM, 2013. The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Current Applied Physics, 13: 1225-1230.

Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi

Year 2020, , 179 - 189, 01.03.2020
https://doi.org/10.21597/jist.600490

Abstract

Bu çalışmada, C20H12 (perilen) ince film tabaka spin kaplama metodu ile n-Si üzerine büyütüldü. Au/C20H12/n-Si (Metal-perilen-yarıiletken) yapının kapasitans-voltaj (C-V) ve iletkenlik-voltaj (G/-V) karakteristikleri, oda sıcaklığında, 200kHz-3MHz frekans ve ±6V voltaj aralığında incelendi. Potansiyel engel yüksekliği (B), seri direnç (Rs) ve arayüzey durumları (Nss) gibi temel elektriksel parametrelerin frekansa ve voltaja oldukça bağlı olduğu görüldü. C-V eğrilerinde yüksek frekanslarda negatif kapasitans davranışı gözlendi. Nicollian ve Brews metodu kullanılarak Au/C20H12/n -Si yapının seri direnci (Rs) ve Hill-Coleman metodu kullanılarak da arayüzey durumlarının (Nss) voltaja bağlı değişimi incelendi. Seri direnç değerleri her frekans değeri için bir pik vermekte ve artan frekans ile azalmaktadır. Arayüzey durumları da artan frekans değeri ile eksponansiyel olarak azalmaktadır. Elde edilen deneysel sonuçlar ile hem Rs hem de Nss değerlerinin C-V ve G/-V ölçümleri üzerinde oldukça etkili olduğu gözlendi.

References

  • Altindal Ş, Parlaktürk F, Tataroǧlu A, Parlak M, Sarmasov SN, Agasiev AA, 2008. The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures. Vacuum, 82 (11): 1246-1250.
  • Arslan E, Şafak Y, Altındal Ş, Kelekçi O, Özbay E, 2010. Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures. Journal of Non-Crystalline Solids, 356 (20-22): 1006-1011.
  • Asir S, Demir AS, Icil H, 2010. Efficient Synthesis of New Unsymmetrically Substituted Chiral Naphthalene and Perylene Diimides: Their Photophysical, Electrochemical, Chiroptical and Intramolecular Charge Transfer Properties. Dyes and Pigments, 84: 1-13.
  • Bengi S, Bülbül MM, 2013. Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Current Applied Physics, 13: 1819-1825.
  • Bilkan Ç, Zeyrek S, San SE, Altındal Ş, 2015. A compare of electrical characteristics in Al/p-Si (MS) and Al/C20H12/p-Si (MPS) type diodes using current–voltage (I–V) and capacitance–voltage (C–V) measurements. Materials Sicence in Semiconductor Processing, 32:137-144.
  • Bilkan Ç, Gümüş A, Altındal Ş, 2015. The source of negative capacitance and anomalous peak in the forward bias capacitance-voltage in Cr/p-si Schottky barrier diodes (SBDs). Materials Sicence in Semiconductor Processing, 39:484-491.
  • Bülbül MM, Zeyrek S, Altındal Ş, Yüzer H, 2006. On the profile of temperature dependent series resistance in Al/Si3N4/p-Si (MIS) Schottky diodes. Microelectronic Engineering, 83 (3): 577-581.
  • Chand S, Kumar J, 1995. Current-voltage characteristics and barrier parameters of Pd2Si/p-Si (111) Schottky diodes in a wide temperature range. Semiconductor Science and Technology, 10: 1680-1688.
  • Chattopadhyay P, Raychaudhuri B, 1993. Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid State Electronics, 36 (4): 605-610. Cheung SK, Cheung NW, 1986. Comparison of Parameter Extraction Tecniques for SiC Schottky Diodes. Applied Physics Letters, 49: 85-87.
  • Çakar M, Yıldırım N, Karataş Ş, Temirci C, Turut A, 2006. Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101/n-Si and Sn/rhodamine-101/p-Si Schottky barrier diodes. Journal of Applied Physics, 100 (7): 74505-74510.
  • Çetinkaya HG, 2018. Frequency and voltage dependent profile of dielectric parameters and electric modulus for Al/(HgS-PVA)/p-Si Capacitor via impedance Spectroscopy method. Journal of Nanoelectronics and Optoelectronics, 13(3): 421-427.
  • Çetinkaya HG, 2017. Aynı Şartlarda Hazırlanmış Al/Bi3Ti4O12/n-Si (MFS) diyotların (60 Adet) Engel Yükseklikleri İle İdealite Faktörlerindeki Dağılım. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(1): 89-96.
  • Ershov M, Liu HC, Li L, Buchanan M, Wasilewski ZR, Jonscher AK, 1998. Negative capacitance effect in semiconductor devices. IEEE Transactions on Electron Devices, 45: 2196-2205.
  • Ehrenfreund E, Lungenschmined C, Dennler G, Neugebauer H, Sariciftci NS, 2007. Negative capacitance in organic semiconductor devices: Bipolar injection and charge recombination mechanism. , Applied Physics Letters, 91: 012112-3.
  • Güllü Ö, Aydoğan Ş, Türüt A, 2008. Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23 (7): 075005:1-5.
  • Güllü Ö, Türüt A, 2009. Electrical analysis of organic interlayer based metal/interlayer/semiconductor diode structures. Journal of Applied Physics, 106 (10): 103717-103722.
  • Hill Coleman WA, Coleman CC, 1980. A single-frequency approximation for interface-state density determination. Solid State Electronics, 23: 987-993.
  • Jones BK, Santana J, McPherson M, 1988. Negative capacitance effect in semiconductor diodes. Solid State Communication, 107: 47-50.
  • Karabulut A, 2018. Dielectric Characterization of Si-Based Heterojunction with TiO2 Interfacial Layer. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3): 119-129.
  • Kaya A, Zeyrek S, San SE, Altındal Ş, 2014. Electrical and dielectric properties of Al/p-Si and Al/perylene/p-Si type diodes in a wide frequency range. Chinese Physics B, 23(1): 018506.
  • Korucu D, Turut A, Altındal Ş, 2013. The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range. Current Applied Physics, 13: 1101-1108.
  • Nagao Y, 1997. Synthesis and properties of perylene pigments. Progress in Organic Coatings, 31: 43-49.
  • Nicollian EH, Brews JR, 1982. MOS Physics and Technology. John Wiley & Sons, pp. 40-175, 222-226, 423-439, New York-USA
  • Norde H, 1979. A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50 (7): 5052-5053.
  • Orak İ, Koçyiğit A, 2016. The Electrical Characterization Effect of Insulator Layer between Semiconductor and Metal, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(3): 57-67.
  • Rhoderick EH, Williams RH, 1988. Metal Semicondutor Contacts. Oxford Press, pp. 257-264, New York-USA.
  • Sato K, Yasamura Y, 1985. Study of forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 58 (9): 3655-3658.
  • Seo HS, An MJ, Zhang Y, Choi JH, 2010. Characterization of perylene and tetracene-based ambipolar light-emitting field-effect transistors. The Journal of Physical Chemistry C, 114 (13): 6141-6147.
  • Sze SM, 1981. Physics of Semiconductor Devices 2nd edition. John Wiley & Sons, pp. 362-390, New York-USA.
  • Sharma BL, 1984. Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Plenum Press, pp. 1-3, New York-USA.
  • Tanrıkulu EE, Demirezen S, Altındal Ş, Uslu İ, 2018. On the anomalous peak and negative capacitance in the capacitance–voltage (C–V) plots of Al/(%7 Zn-PVA)/p-Si (MPS) structure. Journal of Materials Science: Materials in Electronics, 29: 2890-2898.
  • Taşçıoğlu İ, Aydemir U, Altındal Ş, 2010. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer. Journal of Applied Physics, 108: 6 064506-064511.
  • Werner J, Levi AFJ, Tung RT, Anzlowar M, Pinto M, 1988. Origin of the Excess Capacitance at Intimate Schottky Contacts. Physical Review Letters, 60 (1): 53-56.
  • Yalçın M, Yakuphanoğlu F, 2019. Voltage and frequency dependence of negative capacitance behavior in a Graphene-TiO2 nanocomposite photoanode based on quantum dot sensitized solar cells. Optik, 183: 1099-1105.
  • Yang L, Wang M, Chen H, 2008. Synthesis, electrochemical, and spectroscopic properties of soluble perylene monoimide diesters. Tetrahedron, 64 (22): 5404-5409.
  • Yerişkin SA, 2019. Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms (CMs) in the Au/n-Si (MS) structures at room temperature. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2): 835-846.
  • Zeyrek S, Acaroğlu E, Altındal Ş, Birdoğan S, Bülbül MM, 2013. The effect of series resistance and interface states on the frequency dependent C–V and G/w–V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Current Applied Physics, 13: 1225-1230.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Seda Bengi 0000-0002-3348-0712

Publication Date March 1, 2020
Submission Date August 2, 2019
Acceptance Date November 28, 2019
Published in Issue Year 2020

Cite

APA Bengi, S. (2020). Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi. Journal of the Institute of Science and Technology, 10(1), 179-189. https://doi.org/10.21597/jist.600490
AMA Bengi S. Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi. J. Inst. Sci. and Tech. March 2020;10(1):179-189. doi:10.21597/jist.600490
Chicago Bengi, Seda. “Au/C20H12/N-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi”. Journal of the Institute of Science and Technology 10, no. 1 (March 2020): 179-89. https://doi.org/10.21597/jist.600490.
EndNote Bengi S (March 1, 2020) Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi. Journal of the Institute of Science and Technology 10 1 179–189.
IEEE S. Bengi, “Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi”, J. Inst. Sci. and Tech., vol. 10, no. 1, pp. 179–189, 2020, doi: 10.21597/jist.600490.
ISNAD Bengi, Seda. “Au/C20H12/N-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi”. Journal of the Institute of Science and Technology 10/1 (March 2020), 179-189. https://doi.org/10.21597/jist.600490.
JAMA Bengi S. Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi. J. Inst. Sci. and Tech. 2020;10:179–189.
MLA Bengi, Seda. “Au/C20H12/N-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi”. Journal of the Institute of Science and Technology, vol. 10, no. 1, 2020, pp. 179-8, doi:10.21597/jist.600490.
Vancouver Bengi S. Au/C20H12/n-Si (MPS) Yapının Elektriksel Özelliklerinin Frekansa Bağlı İncelenmesi. J. Inst. Sci. and Tech. 2020;10(1):179-8.