Research Article
BibTex RIS Cite

Design and Implementation of Autonomous Surface Vehicle for Inland Water

Year 2020, , 101 - 111, 01.03.2020
https://doi.org/10.21597/jist.642503

Abstract

This paper considers the design and implementation of a low-cost and modular autonomous surface robot for inland water. The design process consists of three stages: Mechanical and electro-mechanical design, electrical and electronic design and software design. The mechanical design is based on a two-hull construction because of its low risk of capsizing in rough water. Off-the-shelf hulls and electric trolling motor are preferred to reduce the cost. The robot is steered by a rudder controlled by a servo motor. A Robot Operating System based software running on an on-board computer is developed to achieve autonomy. The robot’s status is monitored using the ground station software. The developed system was tested through a series of field experiments. The system is also compared with the existing designs. The robot’s available deck space and modular software architecture enable users to easily integrate various sensors and mechanical parts for a wide range of applications such as environmental monitoring, surveillance and patrolling.

Thanks

We are grateful for the financial and logistical support of ENARGE and the contribution of Ali Akdemir, M. Salih Aydoğan, Kamil Çalışkan and Anıl Gürses to the ground station, mechanical design, speed control circuit, and electrical design, respectively.

References

  • Anonymous, 2018. Raspberry Pi Images. http://downloads.ubiquityrobotics.com/pi.html (Date of access: 10 July 2019)
  • Bayram H, Hook JV, Isler V, 2016. Gathering bearing data for target localization. IEEE Robotics and Automation Letters, 1(1): 369-374.
  • Beser F, Yildirim T, 2018. COLREGS Based Path Planning and Bearing Only Obstacle Avoidance for Autonomous Unmanned Surface Vehicles. Procedia Computer Science, 131: 633-640.
  • Caccia M, Bono R, Bruzzone G, Spirandelli E, Veruggio G, Stortini AM, Capodaglio G, 2005. Sampling sea surfaces with SESAMO: an autonomous craft for the study of sea-air interactions. IEEE Robotics & Automation Magazine, 12(3): 95-105.
  • Curcio J, Leonard J, Patrikalakisi A, 2005. SCOUT-a low cost autonomous surface platform for research in cooperative autonomy. IEEE OCEANS, Brest, June 20-23, 2005, pp: 725-729.
  • Ferri G, Manzi A, Fornai F, Ciuchi F, Laschi C, 2014. The HydroNet ASV, a small-sized autonomous catamaran for real-time monitoring of water quality: From design to missions at sea. IEEE Journal of Oceanic Engineering, 40(3): 710-726.
  • Fornai F, Ferri G, Manzi A, Ciuchi F, Bartaloni F, Laschi C, 2016. An autonomous water monitoring and sampling system for small-sized ASVs. IEEE Journal of Oceanic Engineering, 42(1): 5-12.
  • Friebe A, Olsson M, Le Gallic M, Springett JL, Dahl K, Waller M, 2017. A marine research ASV utilizing wind and solar power. IEEE OCEANS, Aberdeen, June 19-22, 2017, pp: 1-7.
  • González-Reolid I, Molina-Molina J, Guerrero-González A, Ortiz F, Alonso D, 2018. An Autonomous Solar-Powered Marine Robotic Observatory for Permanent Monitoring of Large Areas of Shallow Water. Sensors, 18(10): 1-24.
  • Groves K, West A, Gornicki K, Watson S, Carrasco J, Lennox B, 2019. MallARD: An Autonomous Aquatic Surface Vehicle for Inspection and Monitoring of Wet Nuclear Storage Facilities. Robotics, 8(2): 1-17.
  • Hitz G, Pomerleau F, Garneau M, Pradalier C, Posch T, Pernthaler J, Siegwart RY, 2011. Lizhbeth: Toward Autonomous Toxic Algae Bloom Monitoring. IEEE/RJS International Conference on Intelligent Robots and Systems - Workshop Robotics for Environmental Monitoring, San Francisco, CA, USA, 2011, pp: 1-5.
  • Hitz G, Pomerleau F, Garneau ME, Pradalier C, Posch T, Pernthaler J, Siegwart RY, 2012. Autonomous inland water monitoring: Design and application of a surface vessel. IEEE Robotics & Automation Magazine, 19(1): 62-72.
  • Hitz G, Galceran E, Garneau M, Pomerleau F, Siegwart R, 2017. Adaptive continuous‐space informative path planning for online environmental monitoring. Journal of Field Robotics, 34(8): 1427-1449.
  • Jung S, Cho H, Kim D, Kim K, Han J, Myung H, 2017. Development of algal bloom removal system using unmanned aerial vehicle and surface vehicle. IEEE Access, 5, 22166-22176.
  • Lindemuth M, Murphy R, Steimle E, Armitage W, Dreger K, Elliot T, Hall M, Kalyadin D, Kramer J, Palankar M, Pratt K, 2011.Sea robot-assisted inspection. IEEE Robotics & Automation Magazine, 18(2): 96-107.
  • Liu Z, Zhang Y, Yu X, Yuan C, 2016. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71–93.
  • Manley JE, 2008. Unmanned surface vehicles, 15 years of development. IEEE OCEANS, Quebec City, September 15-18, 2008, pp: 1-4.
  • Melo J, Matos A, 2008. Guidance and control of an ASV in AUV tracking operations. IEEE OCEANS, Quebec City, 2008, September 15-18, pp: 1-7.
  • Moulton J, Karapetyan N, Bukhsbaum S, McKinney C, Malebary S, Sophocleous G, Li AQ, Rekleitis I, 2018. An Autonomous Surface Vehicle for Long Term Operations. IEEE OCEANS, Charleston, October 22-25, 2018, pp: 1-10.
  • Murphy RR, Steimle E, Hall M, Lindemuth M, Trejo D, Hurlebaus S, Medina-Cetina Z, Slocum D, 2011. Robot-Assisted Bridge Inspection. Journal of Intelligent and Robotic Systems, 64(1): 77-95.
  • Nisticò A, Baglietto M, Simetti E, Casalino G, Sperindè A,2017. Marea project: UAV landing procedure on a moving and floating platform. IEEE OCEANS, Anchorage, Alaska, September 18-21, 2017, pp: 1-10.
  • Patel M, Jernigan S, Richardson R, Ferguson S, Buckner G, 2019. Autonomous Robotics for Identification and Management of Invasive Aquatic Plant Species. Applied Sciences, 9(12): 1-21.
  • Purvis M, Brown A, 2017. um7. http://wiki.ros.org/um7 (Date of access: 10 July 2019)
  • See HA, 2017. Coordinated guidance strategy for multiple USVs during maritime interdiction operations. Naval Postgraduate School Systems Engineering, Master Thesis.
  • Steimle ET, Hall ML, 2006. Unmanned surface vehicles as environmental monitoring and assessment tools. IEEE OCEANS, Singapore, May 16-19, 2006, pp: 1-5.
  • Tossell K, Thomson R, 2013. gpsd_client. http://wiki.ros.org/gpsd_client (Date of access: 10 July 2019)
  • Woerner K, Benjamin MR, Novitzky M, Leonard JJ, 2019. Quantifying protocol evaluation for autonomous collision avoidance. Autonomous Robots, 43(4): 967-991.
  • Wolf MT, Rahmani A, Croix JDL, Woodward G, Hook JV, Brown D, Schaffer S, Lim C, Bailey P, Tepsuporn S, Pomerantz M, 2017. CARACaS multi-agent maritime autonomy for unmanned surface vehicles in the Swarm II harbor patrol demonstration. Proceedings of SPIE 10195 Unmanned Systems Technology XIX, Anaheim, California, April 9-13, 2017, pp: 10195O.

İç Sular İçin Otonom Suüstü Araç Tasarımı ve Uygulaması

Year 2020, , 101 - 111, 01.03.2020
https://doi.org/10.21597/jist.642503

Abstract

Bu makale, iç sularda çalışacak düşük maliyetli ve modüler bir otonom suüstü robotunun tasarım ve gerçeklemesini ele almaktadır. Tasarım süreci üç aşamadan oluşmaktadır: Mekanik ve elektro-mekanik tasarım, elektrik ve elektronik tasarım ve yazılım tasarımı. Mekanik tasarım, dalgalı zamanlarda devrilme riskinin düşük olmasından dolayı çift gövdeli yapıya dayanmaktadır. Maliyeti düşürmek için piyasada mevcut gövdeler ve elektrikli dıştan takmalı motor tercih edilmiştir. Robot, servo motor tarafından kontrol edilen dümen sayesinde yönlendirilir. Robotun otonomisini gerçeklemek için üzerindeki bilgisayarda çalışan Robot Operating System tabanlı yazılım geliştirilmiştir. Robota ait bilgiler yer istasyon yazılımı üzerinden anlık gözlemlenebilmektedir. Geliştirilen robotik sistem, bir dizi saha deneyleriyle test edilmiştir. Sistem ayrıca mevcut tasarımlar ile de karşılaştırılmıştır. Robotun geniş güverte alanına ve modüler yazılım mimarisine sahip olması kullanıcılara, çevre izleme, gözetleme ve devriye gibi çok çeşitli uygulamalar için gerekli farklı sensörleri ve mekanik parçaları sisteme kolayca entegre etmelerini sağlamaktadır.

References

  • Anonymous, 2018. Raspberry Pi Images. http://downloads.ubiquityrobotics.com/pi.html (Date of access: 10 July 2019)
  • Bayram H, Hook JV, Isler V, 2016. Gathering bearing data for target localization. IEEE Robotics and Automation Letters, 1(1): 369-374.
  • Beser F, Yildirim T, 2018. COLREGS Based Path Planning and Bearing Only Obstacle Avoidance for Autonomous Unmanned Surface Vehicles. Procedia Computer Science, 131: 633-640.
  • Caccia M, Bono R, Bruzzone G, Spirandelli E, Veruggio G, Stortini AM, Capodaglio G, 2005. Sampling sea surfaces with SESAMO: an autonomous craft for the study of sea-air interactions. IEEE Robotics & Automation Magazine, 12(3): 95-105.
  • Curcio J, Leonard J, Patrikalakisi A, 2005. SCOUT-a low cost autonomous surface platform for research in cooperative autonomy. IEEE OCEANS, Brest, June 20-23, 2005, pp: 725-729.
  • Ferri G, Manzi A, Fornai F, Ciuchi F, Laschi C, 2014. The HydroNet ASV, a small-sized autonomous catamaran for real-time monitoring of water quality: From design to missions at sea. IEEE Journal of Oceanic Engineering, 40(3): 710-726.
  • Fornai F, Ferri G, Manzi A, Ciuchi F, Bartaloni F, Laschi C, 2016. An autonomous water monitoring and sampling system for small-sized ASVs. IEEE Journal of Oceanic Engineering, 42(1): 5-12.
  • Friebe A, Olsson M, Le Gallic M, Springett JL, Dahl K, Waller M, 2017. A marine research ASV utilizing wind and solar power. IEEE OCEANS, Aberdeen, June 19-22, 2017, pp: 1-7.
  • González-Reolid I, Molina-Molina J, Guerrero-González A, Ortiz F, Alonso D, 2018. An Autonomous Solar-Powered Marine Robotic Observatory for Permanent Monitoring of Large Areas of Shallow Water. Sensors, 18(10): 1-24.
  • Groves K, West A, Gornicki K, Watson S, Carrasco J, Lennox B, 2019. MallARD: An Autonomous Aquatic Surface Vehicle for Inspection and Monitoring of Wet Nuclear Storage Facilities. Robotics, 8(2): 1-17.
  • Hitz G, Pomerleau F, Garneau M, Pradalier C, Posch T, Pernthaler J, Siegwart RY, 2011. Lizhbeth: Toward Autonomous Toxic Algae Bloom Monitoring. IEEE/RJS International Conference on Intelligent Robots and Systems - Workshop Robotics for Environmental Monitoring, San Francisco, CA, USA, 2011, pp: 1-5.
  • Hitz G, Pomerleau F, Garneau ME, Pradalier C, Posch T, Pernthaler J, Siegwart RY, 2012. Autonomous inland water monitoring: Design and application of a surface vessel. IEEE Robotics & Automation Magazine, 19(1): 62-72.
  • Hitz G, Galceran E, Garneau M, Pomerleau F, Siegwart R, 2017. Adaptive continuous‐space informative path planning for online environmental monitoring. Journal of Field Robotics, 34(8): 1427-1449.
  • Jung S, Cho H, Kim D, Kim K, Han J, Myung H, 2017. Development of algal bloom removal system using unmanned aerial vehicle and surface vehicle. IEEE Access, 5, 22166-22176.
  • Lindemuth M, Murphy R, Steimle E, Armitage W, Dreger K, Elliot T, Hall M, Kalyadin D, Kramer J, Palankar M, Pratt K, 2011.Sea robot-assisted inspection. IEEE Robotics & Automation Magazine, 18(2): 96-107.
  • Liu Z, Zhang Y, Yu X, Yuan C, 2016. Unmanned surface vehicles: An overview of developments and challenges. Annual Reviews in Control, 41, 71–93.
  • Manley JE, 2008. Unmanned surface vehicles, 15 years of development. IEEE OCEANS, Quebec City, September 15-18, 2008, pp: 1-4.
  • Melo J, Matos A, 2008. Guidance and control of an ASV in AUV tracking operations. IEEE OCEANS, Quebec City, 2008, September 15-18, pp: 1-7.
  • Moulton J, Karapetyan N, Bukhsbaum S, McKinney C, Malebary S, Sophocleous G, Li AQ, Rekleitis I, 2018. An Autonomous Surface Vehicle for Long Term Operations. IEEE OCEANS, Charleston, October 22-25, 2018, pp: 1-10.
  • Murphy RR, Steimle E, Hall M, Lindemuth M, Trejo D, Hurlebaus S, Medina-Cetina Z, Slocum D, 2011. Robot-Assisted Bridge Inspection. Journal of Intelligent and Robotic Systems, 64(1): 77-95.
  • Nisticò A, Baglietto M, Simetti E, Casalino G, Sperindè A,2017. Marea project: UAV landing procedure on a moving and floating platform. IEEE OCEANS, Anchorage, Alaska, September 18-21, 2017, pp: 1-10.
  • Patel M, Jernigan S, Richardson R, Ferguson S, Buckner G, 2019. Autonomous Robotics for Identification and Management of Invasive Aquatic Plant Species. Applied Sciences, 9(12): 1-21.
  • Purvis M, Brown A, 2017. um7. http://wiki.ros.org/um7 (Date of access: 10 July 2019)
  • See HA, 2017. Coordinated guidance strategy for multiple USVs during maritime interdiction operations. Naval Postgraduate School Systems Engineering, Master Thesis.
  • Steimle ET, Hall ML, 2006. Unmanned surface vehicles as environmental monitoring and assessment tools. IEEE OCEANS, Singapore, May 16-19, 2006, pp: 1-5.
  • Tossell K, Thomson R, 2013. gpsd_client. http://wiki.ros.org/gpsd_client (Date of access: 10 July 2019)
  • Woerner K, Benjamin MR, Novitzky M, Leonard JJ, 2019. Quantifying protocol evaluation for autonomous collision avoidance. Autonomous Robots, 43(4): 967-991.
  • Wolf MT, Rahmani A, Croix JDL, Woodward G, Hook JV, Brown D, Schaffer S, Lim C, Bailey P, Tepsuporn S, Pomerantz M, 2017. CARACaS multi-agent maritime autonomy for unmanned surface vehicles in the Swarm II harbor patrol demonstration. Proceedings of SPIE 10195 Unmanned Systems Technology XIX, Anaheim, California, April 9-13, 2017, pp: 10195O.
There are 28 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Haluk Bayram 0000-0002-7883-0077

Publication Date March 1, 2020
Submission Date November 4, 2019
Acceptance Date November 28, 2019
Published in Issue Year 2020

Cite

APA Bayram, H. (2020). Design and Implementation of Autonomous Surface Vehicle for Inland Water. Journal of the Institute of Science and Technology, 10(1), 101-111. https://doi.org/10.21597/jist.642503
AMA Bayram H. Design and Implementation of Autonomous Surface Vehicle for Inland Water. J. Inst. Sci. and Tech. March 2020;10(1):101-111. doi:10.21597/jist.642503
Chicago Bayram, Haluk. “Design and Implementation of Autonomous Surface Vehicle for Inland Water”. Journal of the Institute of Science and Technology 10, no. 1 (March 2020): 101-11. https://doi.org/10.21597/jist.642503.
EndNote Bayram H (March 1, 2020) Design and Implementation of Autonomous Surface Vehicle for Inland Water. Journal of the Institute of Science and Technology 10 1 101–111.
IEEE H. Bayram, “Design and Implementation of Autonomous Surface Vehicle for Inland Water”, J. Inst. Sci. and Tech., vol. 10, no. 1, pp. 101–111, 2020, doi: 10.21597/jist.642503.
ISNAD Bayram, Haluk. “Design and Implementation of Autonomous Surface Vehicle for Inland Water”. Journal of the Institute of Science and Technology 10/1 (March 2020), 101-111. https://doi.org/10.21597/jist.642503.
JAMA Bayram H. Design and Implementation of Autonomous Surface Vehicle for Inland Water. J. Inst. Sci. and Tech. 2020;10:101–111.
MLA Bayram, Haluk. “Design and Implementation of Autonomous Surface Vehicle for Inland Water”. Journal of the Institute of Science and Technology, vol. 10, no. 1, 2020, pp. 101-1, doi:10.21597/jist.642503.
Vancouver Bayram H. Design and Implementation of Autonomous Surface Vehicle for Inland Water. J. Inst. Sci. and Tech. 2020;10(1):101-1.