In this paper, we obtain a lower bound for the eigenvalue of the 𝑆𝑝𝑖𝑛𝑐 Dirac operator on an (𝑑≥3)−dimensional compact Riemannian Spin 𝑐−manifold admitting a non−zero harmonic 1−form of constant length. Then we show that, in the limiting case, this 1−form is parallel.
Bu makalede, sıfır olmayan sabit uzunluklu harmonik 1-formu kabul eden (𝑑≥3)−boyutlu kompakt bir Riemann 𝑆𝑝𝑖𝑛𝑐−manifoldu üzerinde tanımlı 𝑆𝑝𝑖𝑛𝑐 Dirac operatörünün öz değeri için alt sınır elde ettik. Daha sonra, limit durumunda harmonik 1−formun paralel olduğunu gösterdik.
Primary Language | English |
---|---|
Subjects | Mathematical Sciences |
Journal Section | Matematik / Mathematics |
Authors | |
Publication Date | June 1, 2020 |
Submission Date | November 8, 2019 |
Acceptance Date | January 5, 2020 |
Published in Issue | Year 2020 |