Research Article
BibTex RIS Cite
Year 2021, , 2729 - 2736, 15.12.2021
https://doi.org/10.21597/jist.946563

Abstract

References

  • Akay C, Yalciner A, 1995. Anew weak field double resonance NMR spectrometer. Z. Naturforsch, (50 a): 177-185.
  • Ardenkaer-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, Golman K, 1998. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging. Journal of Magnetic Resonance, 133 (1): 1-12.
  • Ardenkjaer-Larsen JH, Bowen S, Petersen JR, Rybalko O, Vinding MS, Ullisch M, Nielsen NC, 2019. Cryogen‐free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T. Magnetic Resonance in Medicine, (81): 2184-2194.
  • Bentum JV, Meerten BS, Sharma M, Kentgens A, 2016. Perspectives on DNP-enhanced NMR spectroscopy in solutions. Journal of Magnetic Resonance, (264): 59-67.
  • Biller JR, Barnes R, Hanb S, 2018. Perspective of Overhauser Dynamic Nuclear Polarization for the Study of Soft Materials. Current Opinion in Colloid and Interface Science (33): 72-85.
  • Bunyatova EI, 2004. Free radicals and polarized targets. Nuclear Instruments and Methods in Physics Research A (526): 22-27.
  • Clarkson RB, Odintsov BM, Ceroke PJ, Ardenkjær-Larsen JH, Fruianu M, Belford RL, 1998. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry. Physics in Medicine and Biology, 43 (7): 1907–1920.
  • Doll A, Bordignon E, Joseph B, Tschaggelar R, Jeschke G, 2012. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. Journal of Magnetic Resonance, 222: 34–43.
  • Enkin N, Liu G, Gimenez-Lopez M. del C, Porfyrakis K, Tkach I, Bennati M, 2015. A high saturation factor in Overhauser DNP with nitroxide derivatives: the role of 14N nuclear spin relaxation. Physical Chemistry Chemical Physics, 17 (17): 11144–11149.
  • Franck JM, Han S, 2019. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics. Methods in Enzymology, Elsevier No: 615, pp. 131-175, Cambridge-United States.
  • Franck JM, Kausik R, Han S, 2013. Overhauser dynamic nuclear polarization-enhanced NMR relaxometry. Microporous and Mesoporous Materials, 178: 113-118.
  • Glazer RL, Poindexter E, 1971. Dynamic Nuclear Polarization by Nitroxide, Perhalocarbon, Semiquinone, and Verdazyl Radicals. Journal of Chemical Physics, 55: 4548-4553.
  • Goertz S, Meyer W, Reicherz G, 2002. Polarized H, D and 3He Targets for Particle Physics Experiments. Progress in Particle and Nuclear Physics, 49: 403-489.
  • Griffin RG, Swager TM, Temkin RJ, 2019. High frequency dynamic nuclear polarization: New directions for the 21st century. Journal of Magnetic Resonance, 306: 128–133.
  • Guiberteau T, Grucker D, 1998. Dynamic nuclear polarization at very low magnetic fields. Physics in Medicine and Biology, 43 (7): 1887–1892.
  • Hausser KH, Stehlik D, 1968. Dynamic Nuclear Polarization in Liquids. Advances in Magnetic and Optical Resonance, 3: 79-139.
  • Jaudzems K, Polenova T, Pintacuda G, Oschkinat H, Lesage A, 2019. DNP NMR of biomolecular assemblies. Journal of Structural Biology, 206: 90-98.
  • Johansson E, Mansson S, Wirestam R, Petersson J, Golman K, Stahlberg F, 2004. Cerebral Perfusion Assessment by Bolus Tracking Using Hyperpolarized 13C. Magnetic Resonance in Medicine, 51 (3): 464- 472.
  • Keller TJ, Maly T, 2021. Overhauser Dynamic Nuclear Polarization Enhanced Two-Dimensional Proton NMR Spectroscopy at Low Magnetic Fields. Magnetic Resonance, 2 (1): 117–128.
  • Khan N, Hou H, Hein P, Comi RJ, Buckey JC, Grinberg O, Ildar S, Lu SY, Wallach H, Swartz HM, 2005. Black Magic and EPR Oximetry. Advances in Experimental Medicine and Biology, 566: 119–125.
  • Kirimli HE, 2017. Determining the interaction and characterization of asphaltene in alkylbenzene solvents using nuclear-electron double resonance. Journal of Dispersion Science and Technology, 38(4): 498–505.
  • Kirimli HE, Peksoz A, 2011. A low field proton-electron double resonance study for paramagnetic solutions. Molecular Physics, 109 (3): 337-350.
  • Kryukov EV, Newton ME, Pike KJ, Bolton DR, Kowalczyk RM, Howes AP, Smitha ME, Dupree R, 2010. DNP enhanced NMR using a high-power 94 GHz microwave source: a study of the TEMPOL radical in tolüene. Physical Chemistry Chemical Physics, (12): 5757–5765.
  • Krzic M, Sentjurc M, Kristl J, 2001. Improved skin oxygenation after benzyl nicotinate application in different carriers as measured by EPR oximetry in vivo. Journal of Controlled Release, 70: 203–211.
  • Levien M, Hiller M, Tkach I, Bennati M, Orlando T, 2020. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. Journal of Physical Chemistry Letters, 11: 1629-1635.
  • McCarney ER, Han S, 2008. Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging. Journal of Magnetic Resonance, 190 (2): 307-315.
  • Müller-Warmuth W, Meise-Gresch K, 1983. Molecular Motions and Interactions as Studied by Dynamic Nuclear Polarization (DNP) in Free Radical Solutions. Advances in Magnetic and Optical Resonance, 11: 1-45.
  • Müller-Warmuth W, Öztekin E, Vilhjalmsson R, Yalciner A, 1970. Dynamic Polarization, Molecular Motion and Solvent Effects in Several Organic Solutions as Studied by Proton-Electron Double Resonance. Z. Naturforsch, 25 a: 1688-1695.
  • Nelson SJ, Vigneron D, Kurhanewicz J, Chen A, Bok R, Hurd R, 2008. DNP-Hyperpolarized 13C magnetic resonance metabolic imaging for cancer applications. Applied Magnetic Resonance, 34 (3-4): 533-544.
  • Overhauser AW, 1953. Polarization of Nuclei in Metals. Physical Review, 92(2): 411–415. Potenza J, 1972. Measurement and applications of dynamic nuclear polarization. Advances in Molecular Relaxation Processes, 4 (3-4): 229-354.
  • Sezer D, 2013. Computation of DNP coupling factors of a nitroxide radical in toluene: seamless combination of MD simulations and analytical calculations. Physical Chemistry Chemical Physics, 15(2): 526–540.
  • Yalciner A, 1981. Dynamic nuclear polarization in colloidal asphalt suspensions. Journal of Colloid and Interface Science, 79 (1): 114-125.

Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid

Year 2021, , 2729 - 2736, 15.12.2021
https://doi.org/10.21597/jist.946563

Abstract

Solution state Overhauser-effect-type dynamic nuclear polarization (ODNP) has been studied in the last years. The basis of ODNP is a polarization mechanism that presents nuclei with electron spin polarization. ODNP enhancements studies are presented 4-fluorobenzyl alcohol (4FBA) with the stable nitroxide radical as the polarizing agent for 15, 30 and 60 mM concentrations at 1.53 mT. Major ODNP parameters were obtained. The significant parameter is the coupling parameter, since it determines the maximum NMR signal enhancements and the interactions between the nuclear spin and the electron spin. The coupling parameter can vary from -0.152 to 0.001. The obtained ODNP parameters show that both scalar and dipolar interactions occur. The results show that nitroxide radical can be taken as polarizing agent for ODNP studies of 4-fluorobenzyl alcohol solvent. The effect of dissolved molecular oxygen on the enhancement factor for the sample with the smallest concentration was experimentally investigated.

References

  • Akay C, Yalciner A, 1995. Anew weak field double resonance NMR spectrometer. Z. Naturforsch, (50 a): 177-185.
  • Ardenkaer-Larsen JH, Laursen I, Leunbach I, Ehnholm G, Wistrand LG, Petersson JS, Golman K, 1998. EPR and DNP Properties of Certain Novel Single Electron Contrast Agents Intended for Oximetric Imaging. Journal of Magnetic Resonance, 133 (1): 1-12.
  • Ardenkjaer-Larsen JH, Bowen S, Petersen JR, Rybalko O, Vinding MS, Ullisch M, Nielsen NC, 2019. Cryogen‐free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T. Magnetic Resonance in Medicine, (81): 2184-2194.
  • Bentum JV, Meerten BS, Sharma M, Kentgens A, 2016. Perspectives on DNP-enhanced NMR spectroscopy in solutions. Journal of Magnetic Resonance, (264): 59-67.
  • Biller JR, Barnes R, Hanb S, 2018. Perspective of Overhauser Dynamic Nuclear Polarization for the Study of Soft Materials. Current Opinion in Colloid and Interface Science (33): 72-85.
  • Bunyatova EI, 2004. Free radicals and polarized targets. Nuclear Instruments and Methods in Physics Research A (526): 22-27.
  • Clarkson RB, Odintsov BM, Ceroke PJ, Ardenkjær-Larsen JH, Fruianu M, Belford RL, 1998. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry. Physics in Medicine and Biology, 43 (7): 1907–1920.
  • Doll A, Bordignon E, Joseph B, Tschaggelar R, Jeschke G, 2012. Liquid state DNP for water accessibility measurements on spin-labeled membrane proteins at physiological temperatures. Journal of Magnetic Resonance, 222: 34–43.
  • Enkin N, Liu G, Gimenez-Lopez M. del C, Porfyrakis K, Tkach I, Bennati M, 2015. A high saturation factor in Overhauser DNP with nitroxide derivatives: the role of 14N nuclear spin relaxation. Physical Chemistry Chemical Physics, 17 (17): 11144–11149.
  • Franck JM, Han S, 2019. Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics. Methods in Enzymology, Elsevier No: 615, pp. 131-175, Cambridge-United States.
  • Franck JM, Kausik R, Han S, 2013. Overhauser dynamic nuclear polarization-enhanced NMR relaxometry. Microporous and Mesoporous Materials, 178: 113-118.
  • Glazer RL, Poindexter E, 1971. Dynamic Nuclear Polarization by Nitroxide, Perhalocarbon, Semiquinone, and Verdazyl Radicals. Journal of Chemical Physics, 55: 4548-4553.
  • Goertz S, Meyer W, Reicherz G, 2002. Polarized H, D and 3He Targets for Particle Physics Experiments. Progress in Particle and Nuclear Physics, 49: 403-489.
  • Griffin RG, Swager TM, Temkin RJ, 2019. High frequency dynamic nuclear polarization: New directions for the 21st century. Journal of Magnetic Resonance, 306: 128–133.
  • Guiberteau T, Grucker D, 1998. Dynamic nuclear polarization at very low magnetic fields. Physics in Medicine and Biology, 43 (7): 1887–1892.
  • Hausser KH, Stehlik D, 1968. Dynamic Nuclear Polarization in Liquids. Advances in Magnetic and Optical Resonance, 3: 79-139.
  • Jaudzems K, Polenova T, Pintacuda G, Oschkinat H, Lesage A, 2019. DNP NMR of biomolecular assemblies. Journal of Structural Biology, 206: 90-98.
  • Johansson E, Mansson S, Wirestam R, Petersson J, Golman K, Stahlberg F, 2004. Cerebral Perfusion Assessment by Bolus Tracking Using Hyperpolarized 13C. Magnetic Resonance in Medicine, 51 (3): 464- 472.
  • Keller TJ, Maly T, 2021. Overhauser Dynamic Nuclear Polarization Enhanced Two-Dimensional Proton NMR Spectroscopy at Low Magnetic Fields. Magnetic Resonance, 2 (1): 117–128.
  • Khan N, Hou H, Hein P, Comi RJ, Buckey JC, Grinberg O, Ildar S, Lu SY, Wallach H, Swartz HM, 2005. Black Magic and EPR Oximetry. Advances in Experimental Medicine and Biology, 566: 119–125.
  • Kirimli HE, 2017. Determining the interaction and characterization of asphaltene in alkylbenzene solvents using nuclear-electron double resonance. Journal of Dispersion Science and Technology, 38(4): 498–505.
  • Kirimli HE, Peksoz A, 2011. A low field proton-electron double resonance study for paramagnetic solutions. Molecular Physics, 109 (3): 337-350.
  • Kryukov EV, Newton ME, Pike KJ, Bolton DR, Kowalczyk RM, Howes AP, Smitha ME, Dupree R, 2010. DNP enhanced NMR using a high-power 94 GHz microwave source: a study of the TEMPOL radical in tolüene. Physical Chemistry Chemical Physics, (12): 5757–5765.
  • Krzic M, Sentjurc M, Kristl J, 2001. Improved skin oxygenation after benzyl nicotinate application in different carriers as measured by EPR oximetry in vivo. Journal of Controlled Release, 70: 203–211.
  • Levien M, Hiller M, Tkach I, Bennati M, Orlando T, 2020. Nitroxide Derivatives for Dynamic Nuclear Polarization in Liquids: The Role of Rotational Diffusion. Journal of Physical Chemistry Letters, 11: 1629-1635.
  • McCarney ER, Han S, 2008. Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging. Journal of Magnetic Resonance, 190 (2): 307-315.
  • Müller-Warmuth W, Meise-Gresch K, 1983. Molecular Motions and Interactions as Studied by Dynamic Nuclear Polarization (DNP) in Free Radical Solutions. Advances in Magnetic and Optical Resonance, 11: 1-45.
  • Müller-Warmuth W, Öztekin E, Vilhjalmsson R, Yalciner A, 1970. Dynamic Polarization, Molecular Motion and Solvent Effects in Several Organic Solutions as Studied by Proton-Electron Double Resonance. Z. Naturforsch, 25 a: 1688-1695.
  • Nelson SJ, Vigneron D, Kurhanewicz J, Chen A, Bok R, Hurd R, 2008. DNP-Hyperpolarized 13C magnetic resonance metabolic imaging for cancer applications. Applied Magnetic Resonance, 34 (3-4): 533-544.
  • Overhauser AW, 1953. Polarization of Nuclei in Metals. Physical Review, 92(2): 411–415. Potenza J, 1972. Measurement and applications of dynamic nuclear polarization. Advances in Molecular Relaxation Processes, 4 (3-4): 229-354.
  • Sezer D, 2013. Computation of DNP coupling factors of a nitroxide radical in toluene: seamless combination of MD simulations and analytical calculations. Physical Chemistry Chemical Physics, 15(2): 526–540.
  • Yalciner A, 1981. Dynamic nuclear polarization in colloidal asphalt suspensions. Journal of Colloid and Interface Science, 79 (1): 114-125.
There are 32 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Handan Engin Kirimli 0000-0003-0300-3381

Publication Date December 15, 2021
Submission Date June 1, 2021
Acceptance Date July 18, 2021
Published in Issue Year 2021

Cite

APA Engin Kirimli, H. (2021). Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid. Journal of the Institute of Science and Technology, 11(4), 2729-2736. https://doi.org/10.21597/jist.946563
AMA Engin Kirimli H. Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid. Iğdır Üniv. Fen Bil Enst. Der. December 2021;11(4):2729-2736. doi:10.21597/jist.946563
Chicago Engin Kirimli, Handan. “Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2729-36. https://doi.org/10.21597/jist.946563.
EndNote Engin Kirimli H (December 1, 2021) Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid. Journal of the Institute of Science and Technology 11 4 2729–2736.
IEEE H. Engin Kirimli, “Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 4, pp. 2729–2736, 2021, doi: 10.21597/jist.946563.
ISNAD Engin Kirimli, Handan. “Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2729-2736. https://doi.org/10.21597/jist.946563.
JAMA Engin Kirimli H. Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2729–2736.
MLA Engin Kirimli, Handan. “Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2729-36, doi:10.21597/jist.946563.
Vancouver Engin Kirimli H. Overhauser Dynamic Nuclear Polarization Parameters of a Nitroxide Radical in Liquid. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2729-36.