Research Article
BibTex RIS Cite

Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate

Year 2022, , 389 - 402, 01.03.2022
https://doi.org/10.21597/jist.952021

Abstract

An experimental study is performed to investigate the performance (thermally and electrically) of a small-scale li-ion module (3s2p) using passive thermal management strategy of phase change material (PCM)/graphite matrix. The PCM/graphite matrix was obtained by impregnating the graphite matrix (bulk density: 75 g L-1) with phase change material (paraffin/organic, RT-35). The performance tests of a li-ion module are conducted at 1C and 1.6C discharge rates for graphite matrix composite with phase change (phase change composite or PCM/graphite matrix) and also air cooling, comparatively. To illustrate the performance of the PCM/graphite matrix, transient temperature variations, thermal imaging, discharge capacity, and energy capacity are achieved comprehensively. The results illustrate that graphite matrix composite with phase change has a significant contribution to melting heat transfer, operating temperature, utilized capacity, and energy capacity compared to air cooling. Effective thermal conductivity of PCM/graphite matrix is increased 35 times by comparison with pure paraffin. Operating temperature and temperature gradient throughout the li-ion surface decrease by 22 % and 43 % compared to the air cooling, respectively, for high discharge rate. Operating time and energy capacity is increased 33 % and 28% compared to natural air cooling, respectively, for high discharge rate. It is also disclosed that dominant heat transfer mechanism is conduction depending on micro/nano-size porous structure of graphite matrix.

Supporting Institution

TÜBİTAK

Project Number

2180111

Thanks

This study was financially supported by TUBITAK TEYDEB with project number 2180111.

References

  • Alhusseny A, Al-Zurfi N, Nasser A, Al-Fatlawi A, Aljanabi M, 2020. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units. International Journal of Heat and Mass Transfer, 150: 119320.
  • Arshad A, Jabbal M, Yan, Y, 2020. Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering, 181: 115999.
  • Aydin O, Avci M, Yazici MY, Akgun M, 2018. Enhancing storage performance in a tube-in shell storage unit by attaching a conducting fin to the bottom of the tube. Isı Bilimi ve Teknigi Dergisi-Journal of Thermal Science And Technology, 38(2): 1-13.
  • Greco A, Jiang X, Cao D, 2015. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J. Power Sources, 278: 50–68.
  • He J, Yang X, Zhang G, 2019. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Applied Thermal Engineering, 148: 984-991.
  • Jiang GW, Huang JH, Fu YS, Cao M, Liu MC, 2016. Thermal optimization of composite phase change material/expanded graphite for li-Ion battery thermal management. Thermal Engineering, 108: 1119-1125.
  • Kang S, Choi JY, Choi S, 2019. Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2): 1-16.
  • Kizilel R, Lateef A, Sabbah R, Farid MM, Selman JR, Al-Hallaj S, 2008. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1): 370-375.
  • Kizilel R, Sabbah R, Selman JR, Al-Hallaj S, 2009. An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194(2): 1105-1112.
  • Landini S, Leworthy J, O’Donovan TS, 2019. A review of phase change materials for the thermal management and isothermalisation of lithium-ion cells. Journal of Energy Storage, 25: 100887.
  • Liu H, Wei Z, He W, Zhao J, 2017. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150: 304-330.
  • Mallow A, Abdelaziz O, Graham S, 2018. Thermal charging performance of enhanced phase change material composites for thermal battery design. Int. J. Thermal Science, 127: 19-28.
  • Mills A, Farid M, Selman JR, Al-Hallaj S, 2006. Thermal conductivity enhancement of phase change materials using a graphite matrix. Thermal Engineering, 26(14-15): 1652-1661.
  • Py X, Olives R, Mauran S, 2001. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transfer, 44(14): 2727–2737.
  • Somasundaram K, Birgersson E, Mujumdar AS, 2012. Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. Journal of Power Sources, 203: 84-96.
  • Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S, 2017. Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: an experimental Study. J. Power Sources, 340: 51-59.
  • Wu W, Yang X, Zhang G, Ke X, Wang Z, 2016. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy, 113: 909-916.
  • Wu W, Yang X, Zhang G, Chena K, Wang S, 2017. Experimental investigation on the thermal performance of heat pipe-assisted phase change material-based battery thermal management system. Energy Conversion and Management, 138: 486-492.
  • Yazici MY, Avci M, Aydin O, 2014. Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Solar Energy, 101: 291-298.
  • Zhang S, Feng D, Shi L, Wang L, Jin Y, 2021. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 135: 110127.
  • Zichen W, Changqing D, 2021. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139: 110685.
  • Zou T, Liang X, Wang S, Gao X, Zhang Z, Fang Y, 2020. Effect of expanded graphite size on performances of modified CaCl2⋅6H2O phase change material for cold energy storage. Microporous and Mesoporous Materials, 305: 110403.
Year 2022, , 389 - 402, 01.03.2022
https://doi.org/10.21597/jist.952021

Abstract

Project Number

2180111

References

  • Alhusseny A, Al-Zurfi N, Nasser A, Al-Fatlawi A, Aljanabi M, 2020. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units. International Journal of Heat and Mass Transfer, 150: 119320.
  • Arshad A, Jabbal M, Yan, Y, 2020. Thermophysical characteristics and application of metallic-oxide based mono and hybrid nanocomposite phase change materials for thermal management systems. Applied Thermal Engineering, 181: 115999.
  • Aydin O, Avci M, Yazici MY, Akgun M, 2018. Enhancing storage performance in a tube-in shell storage unit by attaching a conducting fin to the bottom of the tube. Isı Bilimi ve Teknigi Dergisi-Journal of Thermal Science And Technology, 38(2): 1-13.
  • Greco A, Jiang X, Cao D, 2015. An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. J. Power Sources, 278: 50–68.
  • He J, Yang X, Zhang G, 2019. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Applied Thermal Engineering, 148: 984-991.
  • Jiang GW, Huang JH, Fu YS, Cao M, Liu MC, 2016. Thermal optimization of composite phase change material/expanded graphite for li-Ion battery thermal management. Thermal Engineering, 108: 1119-1125.
  • Kang S, Choi JY, Choi S, 2019. Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2): 1-16.
  • Kizilel R, Lateef A, Sabbah R, Farid MM, Selman JR, Al-Hallaj S, 2008. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1): 370-375.
  • Kizilel R, Sabbah R, Selman JR, Al-Hallaj S, 2009. An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194(2): 1105-1112.
  • Landini S, Leworthy J, O’Donovan TS, 2019. A review of phase change materials for the thermal management and isothermalisation of lithium-ion cells. Journal of Energy Storage, 25: 100887.
  • Liu H, Wei Z, He W, Zhao J, 2017. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150: 304-330.
  • Mallow A, Abdelaziz O, Graham S, 2018. Thermal charging performance of enhanced phase change material composites for thermal battery design. Int. J. Thermal Science, 127: 19-28.
  • Mills A, Farid M, Selman JR, Al-Hallaj S, 2006. Thermal conductivity enhancement of phase change materials using a graphite matrix. Thermal Engineering, 26(14-15): 1652-1661.
  • Py X, Olives R, Mauran S, 2001. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transfer, 44(14): 2727–2737.
  • Somasundaram K, Birgersson E, Mujumdar AS, 2012. Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. Journal of Power Sources, 203: 84-96.
  • Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S, 2017. Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: an experimental Study. J. Power Sources, 340: 51-59.
  • Wu W, Yang X, Zhang G, Ke X, Wang Z, 2016. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy, 113: 909-916.
  • Wu W, Yang X, Zhang G, Chena K, Wang S, 2017. Experimental investigation on the thermal performance of heat pipe-assisted phase change material-based battery thermal management system. Energy Conversion and Management, 138: 486-492.
  • Yazici MY, Avci M, Aydin O, 2014. Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: An experimental study. Solar Energy, 101: 291-298.
  • Zhang S, Feng D, Shi L, Wang L, Jin Y, 2021. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 135: 110127.
  • Zichen W, Changqing D, 2021. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139: 110685.
  • Zou T, Liang X, Wang S, Gao X, Zhang Z, Fang Y, 2020. Effect of expanded graphite size on performances of modified CaCl2⋅6H2O phase change material for cold energy storage. Microporous and Mesoporous Materials, 305: 110403.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Mustafa Yusuf Yazıcı 0000-0002-1076-9265

Project Number 2180111
Publication Date March 1, 2022
Submission Date June 14, 2021
Acceptance Date October 8, 2021
Published in Issue Year 2022

Cite

APA Yazıcı, M. Y. (2022). Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate. Journal of the Institute of Science and Technology, 12(1), 389-402. https://doi.org/10.21597/jist.952021
AMA Yazıcı MY. Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate. Iğdır Üniv. Fen Bil Enst. Der. March 2022;12(1):389-402. doi:10.21597/jist.952021
Chicago Yazıcı, Mustafa Yusuf. “Thermal Management of Small-Scale Li-Ion Battery Module Using Graphite Matrix Composite With Phase Change: Effect of Discharge Rate”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 389-402. https://doi.org/10.21597/jist.952021.
EndNote Yazıcı MY (March 1, 2022) Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate. Journal of the Institute of Science and Technology 12 1 389–402.
IEEE M. Y. Yazıcı, “Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 1, pp. 389–402, 2022, doi: 10.21597/jist.952021.
ISNAD Yazıcı, Mustafa Yusuf. “Thermal Management of Small-Scale Li-Ion Battery Module Using Graphite Matrix Composite With Phase Change: Effect of Discharge Rate”. Journal of the Institute of Science and Technology 12/1 (March 2022), 389-402. https://doi.org/10.21597/jist.952021.
JAMA Yazıcı MY. Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:389–402.
MLA Yazıcı, Mustafa Yusuf. “Thermal Management of Small-Scale Li-Ion Battery Module Using Graphite Matrix Composite With Phase Change: Effect of Discharge Rate”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 389-02, doi:10.21597/jist.952021.
Vancouver Yazıcı MY. Thermal Management of Small-Scale Li-ion Battery Module Using Graphite Matrix Composite with Phase Change: Effect of Discharge Rate. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):389-402.