Research Article
BibTex RIS Cite
Year 2021, , 2772 - 2781, 15.12.2021
https://doi.org/10.21597/jist.955530

Abstract

References

  • Adamski NL, Wickramaratne D, de Walle CGV, 2020. Band alignments and polarization properties of the Zn-IV-nitrides. Journal of Materials Chemistry C, 8:7890–7898.
  • Ahn D, Chuang SL, 1987. Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 23(12):2196–2204.
  • Boyd RW, 2020. Nonlinear Optics (Fourth Edition), Elsevier.
  • Chandra S, Kumar V, 2019. Structural, electronic and elastic properties of ZnGeN2 and WZ-GaN under different hydrostatic pressures: A first-principle study. International Journal of Modern Physics B, 33(25):1950297.
  • Flügge S, 1971. Practical Quantum Mechanics. Springer Berlin Heidelberg.
  • Goldys EM, Shi JJ, 1998. Linear and Nonlinear Intersubband Optical Absorption in a Strained Double Barrier Quantum Well. Physica Status Solidi B, 210, 237.
  • Gunna S, Bertazzi F, Paiella R, Bellotti E, 2007. Nitride Semiconductor Devices: Principles and Simulation. John Wiley & Sons Ltd. p117-143.
  • Hamazaki J, Matsui S, Kunugita H, Ema K, Kanazawa H, Tachibana T, Kikuchi A, Kishino K, 2004. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 μm in GaN/AlN multiple-quantum wells. Applied Physics Letters, 84(2)1102–1104.
  • Han L, Lieberman C, Zhao H, 2017. Study of intersubband transitions in GaN-ZnGeN2 coupled quantum wells. Journal of Applied Physics, 121(3):093101.
  • Harrison P, Jovanović VD, 2016. Quantum Wells Wires and Dots, John Wiley & Sons Ltd. p223-248.
  • Häusler J, Schimmel S, Wellmann P, Schnick W, 2017. Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chemistry - A European Journal, 23(50):12275–12282.
  • Hofstetter D, Schad SS, Wu H, Schaff HW, Eastman LF, 2003. GaN/AlN-based quantum-well infrared photodetector for 1.55 μm. Applied Physics Letters, 83(7):572–574.
  • Jaroenjittichai AP, Lyu S, Lambrecht WRL, 2017. Erratum: Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells [Phys. Rev. B 88, 075302 (2013)]. Physical Review B, 96:079907.
  • Du K, Bekele C, Hayman CC, Angus JC, Pirouz P, Kash K, 2008. Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources, Journal of Crystal Growth, 310(6), 1057–1061.
  • Laidouci A, Aissat A, Vilcot JP, 2018. Temperature Effect on ZnGeN2/GaN Multiwell Quantum Solar Cells. 6th International Renewable and Sustainable Energy Conference (IRSEC), 5-8 Dec. 2018, Rabat, Morocco.
  • Martinez AD, Fioretti AN, Toberer ES, Tamboli AC, 2017. Synthesis, structure, and optoelectronic properties of II-IV-V materials. Journal of Materials Chemistry A, 5:11418–11435.
  • Mora-Ramos ME, Duque CA, Kasapoğlu E, Sarı H, Sökmen I, 2012. Linear and nonlinear optical properties in a semiconductor quantumwell under intense laser radiation: Effects of applied electromagnetic fields. Journal of Luminescence, 132, 901–913.
  • Paudel TR, Lambrecht WRL, 2008. First-principles study of phonons and related ground-state properties and spectra in Zn-IV-N2 compounds. Physical Review B, 78:1152024.
  • Paudel TR, Lambrecht WRL, 2009. First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Physical Review B, 79:245205.
  • Paudel TR, Lambrecht WRL, 2013. Erratum: First-principles study of phonons and related ground-state properties and spectra in Zn-IV-N2 compounds [Phys. Rev. B78, 115204 (2008)]. Physical Review B, 87:039901.
  • Paudel TR, Lambrecht WRL, 2017. Erratum: First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds [Phys. Rev. B 79, 245205 (2009)]. Physical Review B, 96:079906.
  • Piprek J, 2007. Nitrite Semiconductor Devices, WILEY-VCH Verlag GmbH & Co. KGaA, pp. 24, 53, 58, Weinheim.
  • Punya A, Lambrecht WRL, van Schilfgaarde M, 2011. Quasiparticle band structure of Zn-IV-N2 compounds. Physical Review B, 84:165204.
  • Punya A, Lambrecht WRL, 2013. Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells. Physical Review B, 88:075302.
  • Sun G, Soref RA, Khurgin JB, 2005. Active region design of a terahertz GaN/Al0.15Ga0.85N quantum cascade laser. Superlattices and Microstructures, 37(2)107–113.
  • Tellekamp MB, Melamed LC, Norman AG, Tamboli A, 2020. Heteroepitaxial Integration of ZnGeN2 on GaN Buffers Using Molecular Beam Epitaxy. Crystal Growth & Design, 20(3):1868–1875.
  • Yıldırım H, Tomak M, 2005. Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72:115340.
  • Yıldırım H, 2017. Donor binding energies in a GaN/ZnGeN2 quantum well. Superlattices and Microstructures, 111(11):529–535.
  • Yılmaz S, Şahin M, 2010. Third-order nonlinear absorption spectra of an impurity in a spherical quantum dot with different confining potential. Physica Status Solidi B, 247, No. 2, 371–374.
  • Zhu LD, Maruska PH, Norris PE, Yip PW, Bouthillette LO, 1999. Epitaxial Growth and Structural Characterization of Single Crystalline ZnGeN2. MRS Internet Journal of Nitride Semiconductor Research, 4:149–154.

Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells

Year 2021, , 2772 - 2781, 15.12.2021
https://doi.org/10.21597/jist.955530

Abstract

The effects of spontaneous and piezoelectric polarizations on the intersubband absorption in the GaN/ZnGeN2 quantum well are studied. Schrödinger and Poisson equations are solved self-consistently. The first order linear and third order nonlinear absorption coefficients of the intersubband transitions originating from ground and first excited states are calculated. We have presented the results relative to polarization, doping level and well length. The polarization causes the absorption peak to be reduced and shifted to higher energies, and the nonlinear absorption to become weaker, but this effect is slightly reversed with doping. The effect of polarization or doping increases with well length, but they are observed after 26 Å.

References

  • Adamski NL, Wickramaratne D, de Walle CGV, 2020. Band alignments and polarization properties of the Zn-IV-nitrides. Journal of Materials Chemistry C, 8:7890–7898.
  • Ahn D, Chuang SL, 1987. Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE Journal of Quantum Electronics, 23(12):2196–2204.
  • Boyd RW, 2020. Nonlinear Optics (Fourth Edition), Elsevier.
  • Chandra S, Kumar V, 2019. Structural, electronic and elastic properties of ZnGeN2 and WZ-GaN under different hydrostatic pressures: A first-principle study. International Journal of Modern Physics B, 33(25):1950297.
  • Flügge S, 1971. Practical Quantum Mechanics. Springer Berlin Heidelberg.
  • Goldys EM, Shi JJ, 1998. Linear and Nonlinear Intersubband Optical Absorption in a Strained Double Barrier Quantum Well. Physica Status Solidi B, 210, 237.
  • Gunna S, Bertazzi F, Paiella R, Bellotti E, 2007. Nitride Semiconductor Devices: Principles and Simulation. John Wiley & Sons Ltd. p117-143.
  • Hamazaki J, Matsui S, Kunugita H, Ema K, Kanazawa H, Tachibana T, Kikuchi A, Kishino K, 2004. Ultrafast intersubband relaxation and nonlinear susceptibility at 1.55 μm in GaN/AlN multiple-quantum wells. Applied Physics Letters, 84(2)1102–1104.
  • Han L, Lieberman C, Zhao H, 2017. Study of intersubband transitions in GaN-ZnGeN2 coupled quantum wells. Journal of Applied Physics, 121(3):093101.
  • Harrison P, Jovanović VD, 2016. Quantum Wells Wires and Dots, John Wiley & Sons Ltd. p223-248.
  • Häusler J, Schimmel S, Wellmann P, Schnick W, 2017. Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chemistry - A European Journal, 23(50):12275–12282.
  • Hofstetter D, Schad SS, Wu H, Schaff HW, Eastman LF, 2003. GaN/AlN-based quantum-well infrared photodetector for 1.55 μm. Applied Physics Letters, 83(7):572–574.
  • Jaroenjittichai AP, Lyu S, Lambrecht WRL, 2017. Erratum: Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells [Phys. Rev. B 88, 075302 (2013)]. Physical Review B, 96:079907.
  • Du K, Bekele C, Hayman CC, Angus JC, Pirouz P, Kash K, 2008. Synthesis and characterization of ZnGeN2 grown from elemental Zn and Ge sources, Journal of Crystal Growth, 310(6), 1057–1061.
  • Laidouci A, Aissat A, Vilcot JP, 2018. Temperature Effect on ZnGeN2/GaN Multiwell Quantum Solar Cells. 6th International Renewable and Sustainable Energy Conference (IRSEC), 5-8 Dec. 2018, Rabat, Morocco.
  • Martinez AD, Fioretti AN, Toberer ES, Tamboli AC, 2017. Synthesis, structure, and optoelectronic properties of II-IV-V materials. Journal of Materials Chemistry A, 5:11418–11435.
  • Mora-Ramos ME, Duque CA, Kasapoğlu E, Sarı H, Sökmen I, 2012. Linear and nonlinear optical properties in a semiconductor quantumwell under intense laser radiation: Effects of applied electromagnetic fields. Journal of Luminescence, 132, 901–913.
  • Paudel TR, Lambrecht WRL, 2008. First-principles study of phonons and related ground-state properties and spectra in Zn-IV-N2 compounds. Physical Review B, 78:1152024.
  • Paudel TR, Lambrecht WRL, 2009. First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds. Physical Review B, 79:245205.
  • Paudel TR, Lambrecht WRL, 2013. Erratum: First-principles study of phonons and related ground-state properties and spectra in Zn-IV-N2 compounds [Phys. Rev. B78, 115204 (2008)]. Physical Review B, 87:039901.
  • Paudel TR, Lambrecht WRL, 2017. Erratum: First-principles calculations of elasticity, polarization-related properties, and nonlinear optical coefficients in Zn-IV-N2 compounds [Phys. Rev. B 79, 245205 (2009)]. Physical Review B, 96:079906.
  • Piprek J, 2007. Nitrite Semiconductor Devices, WILEY-VCH Verlag GmbH & Co. KGaA, pp. 24, 53, 58, Weinheim.
  • Punya A, Lambrecht WRL, van Schilfgaarde M, 2011. Quasiparticle band structure of Zn-IV-N2 compounds. Physical Review B, 84:165204.
  • Punya A, Lambrecht WRL, 2013. Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells. Physical Review B, 88:075302.
  • Sun G, Soref RA, Khurgin JB, 2005. Active region design of a terahertz GaN/Al0.15Ga0.85N quantum cascade laser. Superlattices and Microstructures, 37(2)107–113.
  • Tellekamp MB, Melamed LC, Norman AG, Tamboli A, 2020. Heteroepitaxial Integration of ZnGeN2 on GaN Buffers Using Molecular Beam Epitaxy. Crystal Growth & Design, 20(3):1868–1875.
  • Yıldırım H, Tomak M, 2005. Nonlinear optical properties of a Pöschl-Teller quantum well. Physical Review B, 72:115340.
  • Yıldırım H, 2017. Donor binding energies in a GaN/ZnGeN2 quantum well. Superlattices and Microstructures, 111(11):529–535.
  • Yılmaz S, Şahin M, 2010. Third-order nonlinear absorption spectra of an impurity in a spherical quantum dot with different confining potential. Physica Status Solidi B, 247, No. 2, 371–374.
  • Zhu LD, Maruska PH, Norris PE, Yip PW, Bouthillette LO, 1999. Epitaxial Growth and Structural Characterization of Single Crystalline ZnGeN2. MRS Internet Journal of Nitride Semiconductor Research, 4:149–154.
There are 30 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Raşit Çakır 0000-0002-7104-9069

Publication Date December 15, 2021
Submission Date June 21, 2021
Acceptance Date September 15, 2021
Published in Issue Year 2021

Cite

APA Çakır, R. (2021). Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells. Journal of the Institute of Science and Technology, 11(4), 2772-2781. https://doi.org/10.21597/jist.955530
AMA Çakır R. Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells. Iğdır Üniv. Fen Bil Enst. Der. December 2021;11(4):2772-2781. doi:10.21597/jist.955530
Chicago Çakır, Raşit. “Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2772-81. https://doi.org/10.21597/jist.955530.
EndNote Çakır R (December 1, 2021) Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells. Journal of the Institute of Science and Technology 11 4 2772–2781.
IEEE R. Çakır, “Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 4, pp. 2772–2781, 2021, doi: 10.21597/jist.955530.
ISNAD Çakır, Raşit. “Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2772-2781. https://doi.org/10.21597/jist.955530.
JAMA Çakır R. Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2772–2781.
MLA Çakır, Raşit. “Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2772-81, doi:10.21597/jist.955530.
Vancouver Çakır R. Polarization Effects on Intersubband Absorption in GaN/ZnGeN2 Quantum Wells. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2772-81.