Research Article
BibTex RIS Cite

Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell

Year 2021, , 2682 - 2694, 15.12.2021
https://doi.org/10.21597/jist.978148

Abstract

Photovoltaic (PV) cells are semiconductor materials that convert sunlight coming on their surfaces directly into electrical energy. Solar panels can be converted into electrical energy with efficiency between 5% and 20% depending on the structure of the solar cells. There are many factors which affect the PV cells' generation of electrical energy. These factors are such as efficiency of the solar cells, sunshine duration, humidity, dust, solar radiation and temperature. In this article, the effect of temperature on the PV cell current-voltage (I-V) and power- current (P-V) curves were investigated. Low temperatures do not adversely effect on solar cell efficiency, while high temperatures reduce productivity significantly. This study was carried out for 10 (°C), 30 (°C) and 50 (°C) of ambient temperature. The effect of temperature on the P-V and I-V of the PV solar cell analyzed and plotted by Matlab/Simulink software program. The efficiency of a photovoltaic PV cell mainly depends on the ambient temperature, PV cell temperature, solar irradiation intensity and the type of semiconductor materiel which the PV cell is produced. In this study, using the PV cell catalog data, the equivalent circuit of the panel is modeled in Matlab software program and the effects of temperature changes on the PV cell power have been investigated.

Supporting Institution

Mardin Artuklu Üniversitesi

Project Number

MAU. BAP.20.MYO.015

Thanks

“MAU. BAP.20.MYO.015” numbered this Project; supported by Mardin Artuklu University- Scientific Research Projects Coordinator ship. The authors thank for the support.

References

  • Çelik AN, Koça F, 2020. Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Doğrulanması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8: 2491-2515.
  • Farivar GB, Asaei B, 2010. Photovoltaic module single diode model parameters extraction based on manufacturer datasheet parameters. In Proc. International Conference IEEE Power Energy, 929–934.
  • Gumus B, Kılıc H, 2018. Time dependent prediction of monthly global solar radiation and sunshine duration using exponentially weighted moving average in southeastern of Turkey. Thermal Scıence, 22(2): 943-951.
  • Hassan ZS, Li H, Kamal T, Arifoğlu U, Mumtaz S, Khan L, 2017. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems. MDPI energies, 10(3): 1-16.
  • Hussein A, 2017. A simple approach to extract the unknown parameters of PV modules. Turkish Journal of Electrical Engineering Computer Sciences, 25: 4431 – 4444.
  • İzgi E, Akkaya YE, 2013. Exergoeconomic analysis of a solar photovoltaic system in. Istanbul, Turkey. Turkısh Journal Of Electrıcal Engıneerıng And Computer Sciences, 21: 350-359.
  • Joga G, Rao G, Lokesh HG, Mounika G, Navya Sai Kuma DP, 2020. Modelling and Design of Solar PV Cell Using Matlab/Simulink. International Journal of Scientific Research in Science, Engineering and Technology, 7(2): 50-55.
  • Malla SG, 2012. Novel Control of Photovoltaic based Water Pumping System without Energy Storage. International Journal of Emerging Electric PowerSystems, 4(13): 2.
  • Md Tofael A, 2017. Modelization and Characterization of Photovoltaic Panels. Masters in solar Energy Engineering, Unıversıdade De Évora.
  • Mishra S, Manish Kumar Madhav K, 2016. Design and simulation study of solar photovoltaic array using simulink model. International Journal of Research and Development in Applied Science and Engineering (IJRDASE), 11(1): 1-4.
  • Motahhir S, El Ghzizal A, Sebti S, Derouich A, 2017. MIL and SIL and PIL tests for MPPT algorithm. Cogent Engineering, 4: 1-17.
  • Nema S, Nema RK, Agnihotri G, 2010. MATLAB/Simulink based study of photovoltaic cells/modules/array and their experimental verification. International journal of Energy and Environment, 1(3): 487-500.
  • Özçelik MA, 2018. Increasing energy efficiency for integrating small scale pv power generation to grid system. The International Journal of Materials and Engineering Technology1(1): 1-7.
  • Özdemir A, Erdem Z, 2017. Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters. Journal of Systems and Control Engineering, 232(2).
  • Prakash R, Sandeep Singh S, 2016. Designing and Modelling of Solar Photovoltaic Cell and Array. Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11(2): 35-40.
  • Rustemli S, Dincer F, 2011. Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink. Electronics and Electrical Engineering, 3(109): 35-40.
  • Saleem H, Karmalkar S, 2009. An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J-V curve. IEEE Electron Device Letters, 30: 349 – 352.
  • Salmi T, Bouzguenda M, Gastli A, Ahmed Masmoudi A. 2012. Matlab/Simulink Based Modelling of Solar Photovoltaic Cell. Internatıonal Journal of Renewable Energy Research, 2(2).
  • Savitha PB, Shashikala MS, Puttabuddhi KL, 2014. Modelling of Photovoltaic Cell/Module under Environmental Disturbances using Matlab/Simulink. International Journal of Engineering Trends and Technology (IJETT), 9(1): 48-55.
  • Utma A, Özçelik MA, Yılmaz AS, 2017. The Desıgn Of A Smart Energy Management System For Microgrids. International Journal of Energy and Smart Grid (IJESG), 2(2): 34-42.
  • Villalva MG, Gazoli JR, Filho ER, 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5): 1198-1208.
  • Yilmaz AS, Kececioglu OF, Tekin M, Ozalp A, Sekkeli M, 2014. A Field work for Power Quality in City Centers: A casestudy of Kahramanmaras City. Academic Platform Journal of Engineering and Science (APJES), 2(3): 22-34.

Fotovoltaik Hücre I-V ve P-V Eğrileri Üzerine Sıcaklığın Etkisi

Year 2021, , 2682 - 2694, 15.12.2021
https://doi.org/10.21597/jist.978148

Abstract

Fotovoltaik (FV) hücreler, yüzeylerinden gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarı iletken malzemelerdir. Güneş panelleri, güneş pillerinin yapısına bağlı olarak %5 ile %20 arasında verimlilikle elektrik enerjisine dönüştürülebilir. FV hücrelerinin elektrik enerjisi üretimini etkileyen birçok faktör vardır. Bu faktörler güneş pillerinin verimi, güneşlenme süresi, nem, toz, güneş ışınımı ve sıcaklık gibi faktörlerdir. Bu makalede, sıcaklığın FV hücre AkımGerilimi (I-V) ve Güç-Akım (P-V) eğrileri üzerindeki etkisi araştırılmıştır. Düşük sıcaklıklar, güneş pili verimini olumsuz etkilemezken, yüksek sıcaklıklar üretkenliği önemli ölçüde azaltır. Bu çalışma 10 (°C), 30 (°C) ve 50 (°C) ortam sıcaklığında gerçekleştirilmiştir. Sıcaklığın FV güneş pilinin P-V ve I-V üzerindeki etkisi Matlab / Simulink yazılım programı ile analiz edilmiş ve çizilmiştir. Bir fotovoltaik hücresinin verimliliği, esas olarak ortam sıcaklığına, FV hücre sıcaklığına, güneş ışınlama yoğunluğuna ve FV hücresinin üretildiği yarı iletken malzemenin türüne bağlıdır. Bu çalışmada, FV hücre kataloğu verileri kullanılarak, panelin eşdeğer devresi Matlab yazılım programında modellenmiş ve sıcaklık değişimlerinin FV hücre gücü üzerindeki etkileri araştırılmıştır.

Project Number

MAU. BAP.20.MYO.015

References

  • Çelik AN, Koça F, 2020. Polikristal Tür bir Fotovoltaik Panelin I-V Karakteristiğinin Analitik Modellenmesi ve Deneysel Doğrulanması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8: 2491-2515.
  • Farivar GB, Asaei B, 2010. Photovoltaic module single diode model parameters extraction based on manufacturer datasheet parameters. In Proc. International Conference IEEE Power Energy, 929–934.
  • Gumus B, Kılıc H, 2018. Time dependent prediction of monthly global solar radiation and sunshine duration using exponentially weighted moving average in southeastern of Turkey. Thermal Scıence, 22(2): 943-951.
  • Hassan ZS, Li H, Kamal T, Arifoğlu U, Mumtaz S, Khan L, 2017. Neuro-Fuzzy Wavelet Based Adaptive MPPT Algorithm for Photovoltaic Systems. MDPI energies, 10(3): 1-16.
  • Hussein A, 2017. A simple approach to extract the unknown parameters of PV modules. Turkish Journal of Electrical Engineering Computer Sciences, 25: 4431 – 4444.
  • İzgi E, Akkaya YE, 2013. Exergoeconomic analysis of a solar photovoltaic system in. Istanbul, Turkey. Turkısh Journal Of Electrıcal Engıneerıng And Computer Sciences, 21: 350-359.
  • Joga G, Rao G, Lokesh HG, Mounika G, Navya Sai Kuma DP, 2020. Modelling and Design of Solar PV Cell Using Matlab/Simulink. International Journal of Scientific Research in Science, Engineering and Technology, 7(2): 50-55.
  • Malla SG, 2012. Novel Control of Photovoltaic based Water Pumping System without Energy Storage. International Journal of Emerging Electric PowerSystems, 4(13): 2.
  • Md Tofael A, 2017. Modelization and Characterization of Photovoltaic Panels. Masters in solar Energy Engineering, Unıversıdade De Évora.
  • Mishra S, Manish Kumar Madhav K, 2016. Design and simulation study of solar photovoltaic array using simulink model. International Journal of Research and Development in Applied Science and Engineering (IJRDASE), 11(1): 1-4.
  • Motahhir S, El Ghzizal A, Sebti S, Derouich A, 2017. MIL and SIL and PIL tests for MPPT algorithm. Cogent Engineering, 4: 1-17.
  • Nema S, Nema RK, Agnihotri G, 2010. MATLAB/Simulink based study of photovoltaic cells/modules/array and their experimental verification. International journal of Energy and Environment, 1(3): 487-500.
  • Özçelik MA, 2018. Increasing energy efficiency for integrating small scale pv power generation to grid system. The International Journal of Materials and Engineering Technology1(1): 1-7.
  • Özdemir A, Erdem Z, 2017. Double-loop PI controller design of the DC-DC boost converter with a proposed approach for calculation of the controller parameters. Journal of Systems and Control Engineering, 232(2).
  • Prakash R, Sandeep Singh S, 2016. Designing and Modelling of Solar Photovoltaic Cell and Array. Journal of Electrical and Electronics Engineering (IOSR-JEEE), 11(2): 35-40.
  • Rustemli S, Dincer F, 2011. Modeling of Photovoltaic Panel and Examining Effects of Temperature in Matlab/Simulink. Electronics and Electrical Engineering, 3(109): 35-40.
  • Saleem H, Karmalkar S, 2009. An analytical method to extract the physical parameters of a solar cell from four points on the illuminated J-V curve. IEEE Electron Device Letters, 30: 349 – 352.
  • Salmi T, Bouzguenda M, Gastli A, Ahmed Masmoudi A. 2012. Matlab/Simulink Based Modelling of Solar Photovoltaic Cell. Internatıonal Journal of Renewable Energy Research, 2(2).
  • Savitha PB, Shashikala MS, Puttabuddhi KL, 2014. Modelling of Photovoltaic Cell/Module under Environmental Disturbances using Matlab/Simulink. International Journal of Engineering Trends and Technology (IJETT), 9(1): 48-55.
  • Utma A, Özçelik MA, Yılmaz AS, 2017. The Desıgn Of A Smart Energy Management System For Microgrids. International Journal of Energy and Smart Grid (IJESG), 2(2): 34-42.
  • Villalva MG, Gazoli JR, Filho ER, 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5): 1198-1208.
  • Yilmaz AS, Kececioglu OF, Tekin M, Ozalp A, Sekkeli M, 2014. A Field work for Power Quality in City Centers: A casestudy of Kahramanmaras City. Academic Platform Journal of Engineering and Science (APJES), 2(3): 22-34.
There are 22 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Hasan Cangi 0000-0001-6954-7299

Süleyman Adak 0000-0003-1436-2830

Ahmet Serdar Yılmaz 0000-0001-8082-5448

Project Number MAU. BAP.20.MYO.015
Publication Date December 15, 2021
Submission Date August 3, 2021
Acceptance Date September 7, 2021
Published in Issue Year 2021

Cite

APA Cangi, H., Adak, S., & Yılmaz, A. S. (2021). Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell. Journal of the Institute of Science and Technology, 11(4), 2682-2694. https://doi.org/10.21597/jist.978148
AMA Cangi H, Adak S, Yılmaz AS. Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell. Iğdır Üniv. Fen Bil Enst. Der. December 2021;11(4):2682-2694. doi:10.21597/jist.978148
Chicago Cangi, Hasan, Süleyman Adak, and Ahmet Serdar Yılmaz. “Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2682-94. https://doi.org/10.21597/jist.978148.
EndNote Cangi H, Adak S, Yılmaz AS (December 1, 2021) Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell. Journal of the Institute of Science and Technology 11 4 2682–2694.
IEEE H. Cangi, S. Adak, and A. S. Yılmaz, “Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell”, Iğdır Üniv. Fen Bil Enst. Der., vol. 11, no. 4, pp. 2682–2694, 2021, doi: 10.21597/jist.978148.
ISNAD Cangi, Hasan et al. “Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2682-2694. https://doi.org/10.21597/jist.978148.
JAMA Cangi H, Adak S, Yılmaz AS. Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell. Iğdır Üniv. Fen Bil Enst. Der. 2021;11:2682–2694.
MLA Cangi, Hasan et al. “Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2682-94, doi:10.21597/jist.978148.
Vancouver Cangi H, Adak S, Yılmaz AS. Effect of Temperature on The I-V and P-V Curves of The Photovoltaic Cell. Iğdır Üniv. Fen Bil Enst. Der. 2021;11(4):2682-94.