Research Article
BibTex RIS Cite

Application of Chaotic Based Flower Pollination Algorithm to Solve Inverse Kinematics Problem in Serial Robot Manipulator

Year 2022, , 80 - 90, 01.03.2022
https://doi.org/10.21597/jist.978481

Abstract

The solution of inverse kinematics problems is one of the main problems for serial robot manipulators. In this study, a chaotic-based algorithm has been developed to minimize the complexity of solving the inverse kinematics problem of a series manipulator with 7 degrees of freedom. It is aimed to increase the efficiency of the global and local search features of the original algorithm using the flower pollination algorithm modified with the Henon chaotic map. For the simulation studies, to verify performance of modified algorithms, three different desired position vectors are selected as P1 [−25 100 50], P2 [24 50 100] and P3 [-30 30 80] in meter. In addition, these algorithms were compared according to the end-effector position error and the solution time. The simulation results showed that the chaotic-based algorithms can be effectively used for the inverse kinematic solutions of the serial robot manipulator.

References

  • Ayyıldız M, Çetinkaya K, 2016. Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Comput & Applic 27: 825–836.
  • Çimen ME, Garip, ZB, Boz AF, 2021. Chaotic flower pollination algorithm based optimal PID controller design for a buck converter. Analog Integr Circ Sig Process 107: 281–298.
  • Dereli S, Köker R, 2019. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm, Artificial Intelligence Review.
  • Dereli S, Köker R, 2019. Calculation of the inverse kinematics solution of the 7-DOF redundant robot manipulator by the firefly algorithm and statistical analysis of the results in terms of speed and accuracy, Inverse Problems in Science and Engineering.
  • Durmuş B, Temurtaş H, Gün A, 2011. An Inverse Kinematics Solution using Particle Swarm Optimization, IATS.
  • El-Sherbiny A, Elhosseini MA, Haikal AY, 2018. A comparative study of soft computing methods to solve inverse kinematics problem, Ain Shams Engineering Journal, 9(4):2535-2548.
  • Hénon MA, 1976. Two-Dimensional Mapping With a Strange Attractor. The Theory of Chaotic Attractors. Springer, 94–102.
  • Huang H, Chen C, Wang P, 2012. Particle Swarm Optimization for Solving the Inverse Kinematics of 7-DOF Robotic Manipulators, IEEE International Conference on System.
  • Hwang S, Kim H, Choi Y, Shin K, Han C, 2017. Design Optimization Method for 7 DOF Robot Manipulator Using Performance Indices, Internatıonal Journal Of Precısıon Engıneerıng And Manufacturıng, 18(3): 293-299.
  • Jha P, Bibhuti Bhusan Biswal, 2017.Optimization Approach for Inverse Kinematic Solution, IntechOpen, DOI: 10.5772/intechopen.71409. Available from: https://www.intechopen.com/chapters/57605
  • Karpinska J, Tchon K, Janiak M, 2012. Approximation of Jacobian Inverse Kinematics Algorithms: Differential Geometric vs. Variational Approach, J Intell Robot Syst, 68:211–224.
  • Köker R, 2013. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization,Information Sciences, 222: 528-543.
  • Seraji H, Long MK, Lee TS, 1993. Motion Control of 7-DOF Arms: The Configuration Control Approach, IEEE Transactıons On Robotıcs And Automatıon, 9(2).
  • Tabandeh S, Melek WW, Clark CM, 2010. An adaptive niching genetic algorithm approach for generating multiple solutions of serial manipulator inverse kinematics with applications to modular robots, Robotica, 28 : 493–507.
  • Toz M, 2017. Inverse Kınematıc Solutıon Of A 6 Dof Serıal Robot Manıpulator Wıth Offset Wrıst By Usıng ALO Algorıthm, Sigma J Eng & Nat Sci 8 (2): 81-90.
  • Wang J, Li Y, Zhao X, 2010. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm, International Journal of Advanced Robotic Systems. 7(4):1‐10.
  • Yang XS, 2012. Flower pollination algorithm for global optimization, Unconventional Computation and Natural Computation, 240–249.
  • Yousri D, AbdelAty AM, Said LA, Elwakil AS, Maundy B, Ahmed G. Radwan, 2019. Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models, Applied Soft Computing Journal 75: 750–774.
  • Zhang L, Xiao N, 2019. A novel artificial bee colony algorithm for inverse kinematics calculation of 7-DOF serial manipulators, Soft Computing, 23: 3269–3277.

Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması

Year 2022, , 80 - 90, 01.03.2022
https://doi.org/10.21597/jist.978481

Abstract

Ters kinematik problemlerinin çözümü, seri robot manipülatörlerinin temel problemlerinden biridir. Bu çalışmada, 7 serbestlik dereceli bir seri manipülatörün ters kinematik problemini çözme karmaşıklığını en aza indirmek için kaotik tabanlı bir algoritma geliştirilmiştir. Henon kaotik harita ile modifiye edilen çiçek tozlaşma algoritması kullanılarak orijinal algoritmanın global ve lokal arama özelliklerinin etkinliği arttırılması amaçlanmıştır. Simülasyon çalışmaları için, modifiye edilmiş algoritmaların performansını doğrulamak için metre cinsinden P1[−25 100 50], P2 [50 − 25 75] ve P3 [50 − 25 75] olmak üzere üç farklı istenen konum vektörü seçilmiştir. Ayrıca bu algoritmalar son efektörün konum hatası ve çözüm süresine göre karşılaştırılmıştır. Simülasyon sonuçları, seri robot manipülatörünün ters kinematik çözümleri için kaotik tabanlı algoritmaların etkin bir şekilde kullanılabileceğini göstermiştir.

References

  • Ayyıldız M, Çetinkaya K, 2016. Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Comput & Applic 27: 825–836.
  • Çimen ME, Garip, ZB, Boz AF, 2021. Chaotic flower pollination algorithm based optimal PID controller design for a buck converter. Analog Integr Circ Sig Process 107: 281–298.
  • Dereli S, Köker R, 2019. A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm, Artificial Intelligence Review.
  • Dereli S, Köker R, 2019. Calculation of the inverse kinematics solution of the 7-DOF redundant robot manipulator by the firefly algorithm and statistical analysis of the results in terms of speed and accuracy, Inverse Problems in Science and Engineering.
  • Durmuş B, Temurtaş H, Gün A, 2011. An Inverse Kinematics Solution using Particle Swarm Optimization, IATS.
  • El-Sherbiny A, Elhosseini MA, Haikal AY, 2018. A comparative study of soft computing methods to solve inverse kinematics problem, Ain Shams Engineering Journal, 9(4):2535-2548.
  • Hénon MA, 1976. Two-Dimensional Mapping With a Strange Attractor. The Theory of Chaotic Attractors. Springer, 94–102.
  • Huang H, Chen C, Wang P, 2012. Particle Swarm Optimization for Solving the Inverse Kinematics of 7-DOF Robotic Manipulators, IEEE International Conference on System.
  • Hwang S, Kim H, Choi Y, Shin K, Han C, 2017. Design Optimization Method for 7 DOF Robot Manipulator Using Performance Indices, Internatıonal Journal Of Precısıon Engıneerıng And Manufacturıng, 18(3): 293-299.
  • Jha P, Bibhuti Bhusan Biswal, 2017.Optimization Approach for Inverse Kinematic Solution, IntechOpen, DOI: 10.5772/intechopen.71409. Available from: https://www.intechopen.com/chapters/57605
  • Karpinska J, Tchon K, Janiak M, 2012. Approximation of Jacobian Inverse Kinematics Algorithms: Differential Geometric vs. Variational Approach, J Intell Robot Syst, 68:211–224.
  • Köker R, 2013. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization,Information Sciences, 222: 528-543.
  • Seraji H, Long MK, Lee TS, 1993. Motion Control of 7-DOF Arms: The Configuration Control Approach, IEEE Transactıons On Robotıcs And Automatıon, 9(2).
  • Tabandeh S, Melek WW, Clark CM, 2010. An adaptive niching genetic algorithm approach for generating multiple solutions of serial manipulator inverse kinematics with applications to modular robots, Robotica, 28 : 493–507.
  • Toz M, 2017. Inverse Kınematıc Solutıon Of A 6 Dof Serıal Robot Manıpulator Wıth Offset Wrıst By Usıng ALO Algorıthm, Sigma J Eng & Nat Sci 8 (2): 81-90.
  • Wang J, Li Y, Zhao X, 2010. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm, International Journal of Advanced Robotic Systems. 7(4):1‐10.
  • Yang XS, 2012. Flower pollination algorithm for global optimization, Unconventional Computation and Natural Computation, 240–249.
  • Yousri D, AbdelAty AM, Said LA, Elwakil AS, Maundy B, Ahmed G. Radwan, 2019. Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models, Applied Soft Computing Journal 75: 750–774.
  • Zhang L, Xiao N, 2019. A novel artificial bee colony algorithm for inverse kinematics calculation of 7-DOF serial manipulators, Soft Computing, 23: 3269–3277.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Bilgisayar Mühendisliği / Computer Engineering
Authors

Zeynep Garip 0000-0002-0420-8541

Publication Date March 1, 2022
Submission Date August 3, 2021
Acceptance Date December 1, 2021
Published in Issue Year 2022

Cite

APA Garip, Z. (2022). Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması. Journal of the Institute of Science and Technology, 12(1), 80-90. https://doi.org/10.21597/jist.978481
AMA Garip Z. Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması. Iğdır Üniv. Fen Bil Enst. Der. March 2022;12(1):80-90. doi:10.21597/jist.978481
Chicago Garip, Zeynep. “Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 80-90. https://doi.org/10.21597/jist.978481.
EndNote Garip Z (March 1, 2022) Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması. Journal of the Institute of Science and Technology 12 1 80–90.
IEEE Z. Garip, “Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması”, Iğdır Üniv. Fen Bil Enst. Der., vol. 12, no. 1, pp. 80–90, 2022, doi: 10.21597/jist.978481.
ISNAD Garip, Zeynep. “Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması”. Journal of the Institute of Science and Technology 12/1 (March 2022), 80-90. https://doi.org/10.21597/jist.978481.
JAMA Garip Z. Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması. Iğdır Üniv. Fen Bil Enst. Der. 2022;12:80–90.
MLA Garip, Zeynep. “Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 80-90, doi:10.21597/jist.978481.
Vancouver Garip Z. Seri Robot Manipülatöründe Ters Kinematik Problemi Çözmek İçin Kaotik Tabanlı Çiçek Tozlaşma Algoritmasının Uygulanması. Iğdır Üniv. Fen Bil Enst. Der. 2022;12(1):80-9.