Research Article
BibTex RIS Cite

Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı

Year 2016, Volume: 6 Issue: 4, 101 - 108, 31.12.2016

Abstract

Bu çalışmada, atık suların mikroorganizmalardan arıtımı için alternatif olan ve son zamanlarda dikkat çeken
yöntemler kullanılmıştır. Bu amaçla özellikle atık sularda yer alan
Salmonella typhi RSHMB 96051 bakterisinin
giderimi sonoliz, fotokataliz ve sonofotokataliz yöntemleri kullanılarak incelenmiştir. Yapılan denemelerde farklı
ışık şiddetlerinin bakteri giderimindeki etkileri bu prosesler üzerinde çalışılmıştır. Denemelerde ultrases enerjisi ve
ultraviyole ışınlar hem ayrı ayrı hem de eşzamanlı olarak birlikte kullanımlarıyla yapılmıştır. Bu prosesler sırasıyla
sonoliz, fotokataliz ve sonofotokataliz prosesleridir. Elde edilen sonuçlar karşılaştırıldığında her üç tekniğin de
bakteri gideriminde oldukça etkili olduğu ancak fotokataliz ve sonolizin birlikte kullanılmasıyla olan etkinin en
fazla olduğu tespit edilmiş ve bu yöntemle %100 giderime yaklaşık 6 dakika gibi kısa bir sürede ulaşıldığı tayin
edilmiştir.
  

References

  • Ahmeda A Y, Kandiel T A, Ivanova I, Bahnemann D, 2014. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Appl. Surf. Sci., 319: 44-49.
  • Barrett M, Fitzhenry K, O’Flaherty V, Dore W, Keaveney S, Cormican M, Rowan N, Clifford E, 2016. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. Science of the Total Environment, Article in Press.
  • Bella S W Ho, Tam T-Y, 2000. Rapıd Enumeratıon of Salmonella in Environmental Waters and Wastewater. Water Research, 34: 2397-2399.
  • Behnajady M A, Modirshahla N, Hamzavi R, 2006. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B, 133: 226-232.
  • Brooks J P, Adeli A, McLaughlin M R, 2014. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Research, 57: 96-103.
  • Cabral J P S, 2010. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7: 3657–3703.
  • Crum L A, Mason T J, Reisse J L, Suslick K S, 1999. Sonochemistry and Sonoluminescence, Kluw. Aca, Dordreicht, 363 p.
  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady M A, 2004. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO 2 process. J. Photochem. Photobiol A: Chemistry 168: 39-45.
  • Ertugay N, Acar F N, 2014. The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidationin the presence of ZnO nanocatalyst. Appl. Surf. Sci. 318: 121-126.
  • Farmer J, Brenner F W H, 2003. The Genus Vibrio and Phototobacterium. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3th ed.; M. Dworkin, S. Falkow, E. Rosenberg, Eds., Spr.-Verlag, NY, USA 3.14p.
  • Fuhrimann S, Pham-Duc P, Cissé G, Tram N T, Ha H T, Dung D T, Ngoc P, Nguyen-Viet H, Vuong T A, Utzinger J, Schindler C, Winkler M S, 2016. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers. Science of the Total Environment, Article in Press.
  • Giannakis S, López M I P, Spuhler D, Pérez J A S, Ibá˜nez P F, Pulgarin C, 2016. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 198: 431–446.
  • Gogate P R, Pandit A B, 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research 8: 553–597.
  • Guo M Y, Ching N A M, Liu F, Djuriˇsi ´c A B, Chan W K, 2011. Appl. Catal. B-Environ. 107: 150.
  • http://www.mmo.org.tr/resimler/dosya_ekler/7d16d00201083a2_ ek.pdf?dergi=142 (Erişim tarihi: 26.06.2016.
  • Huang Z, Maness P-C, Blake D M, Wolfrum,E J, Smolinski S L, Jacoby W A, 2000. Bactericidal mode of titanium dioxide photocatalysis. J. Photoch Photobio A, 130: 163–170.
  • Ince N H, Tezcanli G, Belen R, Apikyan I G, 2001. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B: Environ. 29: 167-176.
  • Isaev A B, Magomedova G A, Zakargaeva N A, Adamadzieva N K, 2011. Influence of oxygen pressure on the photocatalytic oxidation of the azo dye Chrome Yellow with TiO2 as the catalyst. Kinet. Catal., 52: 197.
  • Konstantinou I K, Albanis T A, 2004. TiO2 –assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanic investigations. Appl. Catal. B: Environ. 49: 1-14.
  • Krzyzanowski Jr F, Lauretto M S, Nardocci A C, Sato M I Z, Razzolini M T P, 2016. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Science of the Total Environment, 568: 66-74.
  • Lonigro A, Rubino P, Lacasella V, Montemurro N, 2016. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agricultural Water Management, Article in press.
  • Lopez-Velasco G, Tomas-Callejas A, Sbodio A O, Pham X, Wei P, Diribsa D, Suslow T V, 2015. Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during feld production. Food Control, 54: 165- 175.
  • Masarikova M, Manga I, Cizek A, Dolejska M, Oravcova V, Myskova P, Karpiskova R, Literak I, 2016. Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012. Science of the Total Environment 542: 102–107.
  • Monteagudo J M, Duran A, Martin I S, Garcia S, 2014. Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solutionAppl. Catal. B., 152: 59-67.
  • Nissinen T K, Miettinen I T, Martikainen P J, Vartiainen T, 2002. Disinfection by-products in Finnish drinking waters. Chemosphere, 48: 9–20.
  • Pigeot-Rémya S, Simonet F, Errazuriz-Cerda E, Lazzaroni J C, Atlane D, Guillard C, 2011. Photocatalysis and disinfection of water: Identifcation of potential bacterial targets. Applied Catalysis B: Environmental 104: 390–398.
  • Rook J J, 1974. Formation of haloforms during chlorination of natural waters. Water Treat. Exam., 23: 234.
  • Sallach J B, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S, 2015.
  • Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. Environmental Pollution, 197: 269-277.
  • Tanga C, Bai H, Liua L, Zanc X, Gaoa P, Suna D D, Yand W, 2016. A green approach assembled multifunctional Ag/AgBr/TNF membrane for clean water production & disinfection of bacteria through utilizing visible light. Applied Catalysis B: Environmental, 196: 57–67.
  • Tezcanli G, Ince N H, 2004. Individual and combined effects of ultrasound, ozone and UV-irradiation: a case study with textile dyes. Ultrasonics, 42: 603-609.
  • Volkova A V, Nemeth S, Skorb E V, Andreeva D V, 2015. Highly effcient photodegradation of organic pollutants assisted by sonoluminescence. Photochem. Photobiol., 91: 59-67.
  • Wang W, Huang G, Yu J C, Wong P K, 2015. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. Journal of Environmental Sciences, 34: 232 – 247.
  • Wu C H, 2008. Effects of sonication on decolorization of C.I. Reactive Red 198 in UV/ZnO system. J. Hazard. Mater. 153: 1254-1261.
  • Yetim T, Tekin T, 2016. A Kinetic Study on Photocatalytic and Sonophotocatalytic Degradation of Textile Dyes. Periodica Polytechnica Chemical Engineering, Online First: 8535.
  • Zyouda A, Dwikat M , Al-Shakhshir S , Ateeq S, Shteiwi J, Zu’bi A, Helal M H S, Campet G, Park D H, Kwon H, Kim T W, Kharoof M, Shawahna R, Hilal S H, 2016. Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content. Journal of Photochemistry and Photobiology A: Chemistry, 328: 207–216

The Usage of Sonophotocatalytic Process for the Disinfection of Bacteria

Year 2016, Volume: 6 Issue: 4, 101 - 108, 31.12.2016

Abstract

In this study, some of the alternative methods have been utilized for the disinfection of
microorganisms in the waste water. The disinfection of
Salmonella typhi RSHMB 96051 bacteria in the waste water
was investigated using the sonolysis, photocatalysis and sonophotocatalysis processes. In experiments, the effects
of different light intentities have been investigated with the processes mentioned above. The ultrasound energy and
ultraviolet light were used seperately and together as well. These processes are called sonolysis, photocatalysis and
sonophotocatalysis respectively. The results yielded that all the processes were quite effective. The simultaneous
use of sonolysis and photocatalysis yielded the best results. 100% disinfection ratio was obtained within 6 minutes
in this study
  

References

  • Ahmeda A Y, Kandiel T A, Ivanova I, Bahnemann D, 2014. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Appl. Surf. Sci., 319: 44-49.
  • Barrett M, Fitzhenry K, O’Flaherty V, Dore W, Keaveney S, Cormican M, Rowan N, Clifford E, 2016. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. Science of the Total Environment, Article in Press.
  • Bella S W Ho, Tam T-Y, 2000. Rapıd Enumeratıon of Salmonella in Environmental Waters and Wastewater. Water Research, 34: 2397-2399.
  • Behnajady M A, Modirshahla N, Hamzavi R, 2006. Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B, 133: 226-232.
  • Brooks J P, Adeli A, McLaughlin M R, 2014. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Research, 57: 96-103.
  • Cabral J P S, 2010. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health, 7: 3657–3703.
  • Crum L A, Mason T J, Reisse J L, Suslick K S, 1999. Sonochemistry and Sonoluminescence, Kluw. Aca, Dordreicht, 363 p.
  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady M A, 2004. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO 2 process. J. Photochem. Photobiol A: Chemistry 168: 39-45.
  • Ertugay N, Acar F N, 2014. The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidationin the presence of ZnO nanocatalyst. Appl. Surf. Sci. 318: 121-126.
  • Farmer J, Brenner F W H, 2003. The Genus Vibrio and Phototobacterium. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3th ed.; M. Dworkin, S. Falkow, E. Rosenberg, Eds., Spr.-Verlag, NY, USA 3.14p.
  • Fuhrimann S, Pham-Duc P, Cissé G, Tram N T, Ha H T, Dung D T, Ngoc P, Nguyen-Viet H, Vuong T A, Utzinger J, Schindler C, Winkler M S, 2016. Microbial contamination along the main open wastewater and storm water channel of Hanoi, Vietnam, and potential health risks for urban farmers. Science of the Total Environment, Article in Press.
  • Giannakis S, López M I P, Spuhler D, Pérez J A S, Ibá˜nez P F, Pulgarin C, 2016. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 198: 431–446.
  • Gogate P R, Pandit A B, 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research 8: 553–597.
  • Guo M Y, Ching N A M, Liu F, Djuriˇsi ´c A B, Chan W K, 2011. Appl. Catal. B-Environ. 107: 150.
  • http://www.mmo.org.tr/resimler/dosya_ekler/7d16d00201083a2_ ek.pdf?dergi=142 (Erişim tarihi: 26.06.2016.
  • Huang Z, Maness P-C, Blake D M, Wolfrum,E J, Smolinski S L, Jacoby W A, 2000. Bactericidal mode of titanium dioxide photocatalysis. J. Photoch Photobio A, 130: 163–170.
  • Ince N H, Tezcanli G, Belen R, Apikyan I G, 2001. Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl. Catal. B: Environ. 29: 167-176.
  • Isaev A B, Magomedova G A, Zakargaeva N A, Adamadzieva N K, 2011. Influence of oxygen pressure on the photocatalytic oxidation of the azo dye Chrome Yellow with TiO2 as the catalyst. Kinet. Catal., 52: 197.
  • Konstantinou I K, Albanis T A, 2004. TiO2 –assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanic investigations. Appl. Catal. B: Environ. 49: 1-14.
  • Krzyzanowski Jr F, Lauretto M S, Nardocci A C, Sato M I Z, Razzolini M T P, 2016. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Science of the Total Environment, 568: 66-74.
  • Lonigro A, Rubino P, Lacasella V, Montemurro N, 2016. Faecal pollution on vegetables and soil drip irrigated with treated municipal wastewaters. Agricultural Water Management, Article in press.
  • Lopez-Velasco G, Tomas-Callejas A, Sbodio A O, Pham X, Wei P, Diribsa D, Suslow T V, 2015. Factors affecting cell population density during enrichment and subsequent molecular detection of Salmonella enterica and Escherichia coli O157:H7 on lettuce contaminated during feld production. Food Control, 54: 165- 175.
  • Masarikova M, Manga I, Cizek A, Dolejska M, Oravcova V, Myskova P, Karpiskova R, Literak I, 2016. Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012. Science of the Total Environment 542: 102–107.
  • Monteagudo J M, Duran A, Martin I S, Garcia S, 2014. Ultrasound-assisted homogeneous photocatalytic degradation of Reactive Blue 4 in aqueous solutionAppl. Catal. B., 152: 59-67.
  • Nissinen T K, Miettinen I T, Martikainen P J, Vartiainen T, 2002. Disinfection by-products in Finnish drinking waters. Chemosphere, 48: 9–20.
  • Pigeot-Rémya S, Simonet F, Errazuriz-Cerda E, Lazzaroni J C, Atlane D, Guillard C, 2011. Photocatalysis and disinfection of water: Identifcation of potential bacterial targets. Applied Catalysis B: Environmental 104: 390–398.
  • Rook J J, 1974. Formation of haloforms during chlorination of natural waters. Water Treat. Exam., 23: 234.
  • Sallach J B, Zhang Y, Hodges L, Snow D, Li X, Bartelt-Hunt S, 2015.
  • Concomitant uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater irrigation. Environmental Pollution, 197: 269-277.
  • Tanga C, Bai H, Liua L, Zanc X, Gaoa P, Suna D D, Yand W, 2016. A green approach assembled multifunctional Ag/AgBr/TNF membrane for clean water production & disinfection of bacteria through utilizing visible light. Applied Catalysis B: Environmental, 196: 57–67.
  • Tezcanli G, Ince N H, 2004. Individual and combined effects of ultrasound, ozone and UV-irradiation: a case study with textile dyes. Ultrasonics, 42: 603-609.
  • Volkova A V, Nemeth S, Skorb E V, Andreeva D V, 2015. Highly effcient photodegradation of organic pollutants assisted by sonoluminescence. Photochem. Photobiol., 91: 59-67.
  • Wang W, Huang G, Yu J C, Wong P K, 2015. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. Journal of Environmental Sciences, 34: 232 – 247.
  • Wu C H, 2008. Effects of sonication on decolorization of C.I. Reactive Red 198 in UV/ZnO system. J. Hazard. Mater. 153: 1254-1261.
  • Yetim T, Tekin T, 2016. A Kinetic Study on Photocatalytic and Sonophotocatalytic Degradation of Textile Dyes. Periodica Polytechnica Chemical Engineering, Online First: 8535.
  • Zyouda A, Dwikat M , Al-Shakhshir S , Ateeq S, Shteiwi J, Zu’bi A, Helal M H S, Campet G, Park D H, Kwon H, Kim T W, Kharoof M, Shawahna R, Hilal S H, 2016. Natural dye-sensitized ZnO nano-particles as photo-catalysts in complete degradation of E. coli bacteria and their organic content. Journal of Photochemistry and Photobiology A: Chemistry, 328: 207–216
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Kimya / Chemistry
Authors

Tuba Yetim This is me

Publication Date December 31, 2016
Submission Date July 30, 2016
Acceptance Date October 25, 2016
Published in Issue Year 2016 Volume: 6 Issue: 4

Cite

APA Yetim, T. (2016). Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı. Journal of the Institute of Science and Technology, 6(4), 101-108.
AMA Yetim T. Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı. J. Inst. Sci. and Tech. December 2016;6(4):101-108.
Chicago Yetim, Tuba. “Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı”. Journal of the Institute of Science and Technology 6, no. 4 (December 2016): 101-8.
EndNote Yetim T (December 1, 2016) Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı. Journal of the Institute of Science and Technology 6 4 101–108.
IEEE T. Yetim, “Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı”, J. Inst. Sci. and Tech., vol. 6, no. 4, pp. 101–108, 2016.
ISNAD Yetim, Tuba. “Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı”. Journal of the Institute of Science and Technology 6/4 (December 2016), 101-108.
JAMA Yetim T. Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı. J. Inst. Sci. and Tech. 2016;6:101–108.
MLA Yetim, Tuba. “Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı”. Journal of the Institute of Science and Technology, vol. 6, no. 4, 2016, pp. 101-8.
Vancouver Yetim T. Bakteri Gideriminde Sonofotokatalitik Yöntemin Kullanımı. J. Inst. Sci. and Tech. 2016;6(4):101-8.