Research Article
BibTex RIS Cite

The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.)

Year 2017, Volume: 7 Issue: 1, 17 - 22, 31.03.2017

Abstract

Plant growth regulators have important roles in plant growth and development. The externally
applicable chemicals belong to different action classes and each one has a crucial and effective role at different
plant growing stages. Saffron (
Crocus sativus L.) is one of the most important and valuable medicinal and aromatic
plant, belongs to Iridaceae family. Because of impossibility of generative propagation in nature, growing can be
maintened asexually with daughter corms occured each year. In this experiment, the effects of exogenously applied
paclobutrazol, indole-3-butyric acid, zeatin and picloram on saffron developmental stages were studied. Data were
focused on aerial part and corm related characters which is important in developmental fndings in this plant. In the
treatments, paclobutrazol (10 or 20 mg L
-1), indole-3-butyric acid (1 or 3 mg L-1), zeatin (1 or 3 mg L-1) and picloram
(5 or 10 mg L
-1) were applied alone besides control to saffron 45 days after planting to the soil under greenhouse
condition. According to the data picloram concentrations have a retardant role in nodium activation, leaf number
and corm developmental characters (number, weight, diameter and yield of daughter corm) but cause the highest
plant height (60.98 cm in 10 mg L
-1 and 57.37 cm in 5 mg L-1). In 10 mg L-1 paclobutrazol treatments resulted as the
best corm production (469 kg da
-1) than the other treatments and control. Zeatin at 3 mg L-1concentration was found
effective on the best nodium activation (2.81 active nodes/corm). In conclusion, saffron development is affected
signifcantly by externally applied plant growth regulators under soil condition and the application methods can be
progressed in studies on aimed parts of the plant.


References

  • Amiri ME, 2008. Impact of animal manures and chemical fertilizers on yield components of saffron (Crocus sativus L.). American-Eurasian J. Agric&Environ. Sci., 4(3): 274-279.
  • Ault JR, Siqueira SS, 2008. Morphogenetic response of Lilium michiganense to four auxin-type plant growth regulators in vitro. HortScience, 43(6): 1922-1924.
  • Aytekin A, Acıkgoz AO, 2008. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules, 13: 1135-1146.
  • Bhagyalakshmi N, 1999. Factors influencing direct shoot regeneration from ovary explants of saffron. Plant Cell, Tissue and Organ Culture, 58: 205-211.
  • Cavusoglu A, Sulusoglu M, Erkal S, 2013. Plant regeneration and corm formation of saffron (Crocus sativus L.) in vitro. Research Journal of Biotechnology, 8(12): 128-133.
  • Colins GB, Vian WE, Phillips GC, 1978. Use of 4-Amino-3,5,6-trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Science, 18(2): 286-288.
  • Çavuşoğlu A, Sülüşoğlu M, 2012. Saffron corm and habitus growth under nitrogen fertilized field condition. Tıbbi ve Aromatik Bitkiler Sempozyumu Bildiriler Kitabı, Tokat, Türkiye. 156-161.
  • Devi K, Sharma M, Singh M, Ahuja PS, 2011. In vitro cormlet production and growth evaluation under greenhouse conditions in saffron (Crocus sativus L.)- A commercially important crop. Eng. Life Sci., 11(2): 189-194.
  • Devi K, Sharma M, Ahuja PS, 2014. Direct somatic embryogenesis with high frequency plantlet regeneration and succssive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany. 93: 207-216.
  • Francescangeli N, 2009. Paclobutrazol and cytokinin to produce iris (Iris x hollandica Tub.) in pots. Chilean Journal of Agricultural Research. 69 (4): 509-515.
  • IARC, 1991. Picloram. IARC monographs on the evaluation of carcinogenic risks to human, Lyon-France. 53: 481-493. Khan MA, Naseer S, Nagoo S, Nehvi FA, 2011. Behavior of saffron (Crocus sativus L.) corms for daughter corm production. Journal of Phytology. 3 (7): 47-49.
  • Krug BA, Whipker BE, McCall I, 2007. Caladium growth control with flurprimidol, paclobutrazol, and uniconazole. HortTechnology,17(3): 368-370.
  • Nagaraju V, Bhowmik G, Parthasarathy VA, 2002. Effect of paclobutrazol and sucrose on in vitro cormel formation in gladiolus. Acta Bot. Croat., 61(1): 27-33.
  • Negbi M, Dagan B, Dror A, Basker D, 1989. Growth, flowering, vegetative reproduction and dormancy in the saffron crocus (Crocus sativus L.). Isr. J. Bot., 38:95-113.
  • Plessner O, Ziv M, Negbi M, 1990. In vitro corm production in the saffron crocus (Crocus sativus L.). Plant Cell Tiss. Org. Cult., 20: 89-94.
  • Renau-Morata, B, Moya L, Nebauer SG, Segui-Simarro JM, Para-Vega V, Gomez MD, Molina RV, 2013. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crop Prod., 46: 97-104.
  • Ríos JL, Recio MC, Giner RM, Máňez S, 1996. An update review of saffron and its active constituents. Phytother. Res., 10: 189-193.
  • Sampathu SR, Shivshankar S, Lewis YS, 1984. Saffron (Crocus sativus L.) cultivation, processing, chemistry and standardization. CRC Crit. Rev. Food Sci. Nutr., 20(2): 123-157.
  • Sharma KD, Rathour R, Sharma R, Goel S, Sharma TR, Singh BM, 2008. In vitro cormlet development in Crocus sativus. Biol. Plantarum, 52(4): 709-712.
  • Steinitz B, Cohen A, Goldberg Z, Kochba M, 1991. Precocious gladiolus corm formation in liquid shake cultures. Plant Cell, Tissue and Organ Culture, 26: 63-70.
  • Turhan H, Kahriman F, Egesel CO, Gul MK, 2007. The effects of different growing media on flowering and corm formation of saffron (Crocus sativus L.). African Journal of Biotechnology, 6(20): 2328-2332.
  • WHO, 2009. The WHO recommended classification of pesticides by hazard and guidelines to classification, Stuttgard-Germany, 39-46.
  • Yaacob JS, Yussof AIM, Taha RM, Mohajer S, 2012. Somatic embryogenesis and plant regeneration from bulb, leaf and root explants of African blue lily (Agapanthus praecox ssp. minimus). Australian Journal of Crop Science, 6(19): 1462-1470.
  • Zeybek E, Önde S, Kaya Z, 2012. Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron. Central Eur. J. Biol., 7(1): 138-145.
  • Zuyasna S, Hafsah S, Fajri R, Syahputra MO, Ramadhan G, 2012. The effect of picloram concentrations and explants types on the induction of somatic embryo on North Aceh Cocoa genotype. Proceedings of the 2nd Annual International Conference Syiah Kuala University & The 8th IMT-GT Uninet Biosciences Conference Banda Aceh., 2(1): 395-398.

Safran (Crocus sativus L.)’da Bitki Gelişimi Üzerine Dışarıdan Uygulanan Bitki Gelişim Düzenleyicilerinin Etkisi

Year 2017, Volume: 7 Issue: 1, 17 - 22, 31.03.2017

Abstract

Dışsal uygulanabilen kimyasallar olan ve farklı etki sınıfları içinde bulunan bitki gelişim düzenleyicilerinin
her biri bitki büyüme ve gelişiminin farklı aşamaları üzerinde hayati ve önemli işlevlere sahiptir. Tıbbi ve aromatik
bitkiler içinde en önemli ve değerli bitkilerden biri olan safran (
Crocus sativus L.) Iridaceae familyasına ait olup,
doğal olarak generatif yolla üretilmesi mümkün olmadığından bitki gelişimi aseksüel olarak her yıl meydana
gelen yavru kormlardan sağlanmaktadır. Bu araştırmada dışsal olarak uygulanan paclobutrazol, indole-3-butyric
acid, zeatin and picloram maddelerinin safran gelişimi üzerine etkileri çalışılmıştır. Bitki gelişimi için önemli
parametreler olan korm ve toprak üstü aksamı ile ilişkili karakterlerle ilgili veriler toplanmıştır. Çalışmada kontrol
parsellerinin yanında paclobutrazol, indole-3-butyric acid, zeatin ve picloram bitki dikiminden 45 gün sonra cam
serada toprağa uygulanmıştır. Elde edilen verilere göre picloram konsantrasyonları nodyum aktivasyonu, yaprak
sayısı ve korm gelişim özellikleri (korm sayısı, ağırlığı, çapı ve yavru korm verimi) için geciktirici bir rol oynarken,
en yüksek bitki boyu (10 mg L
-1 de 60.98 cm ve 5 mg L-1 de 57.37 cm) elde edilmiştir. 10 mg L-1 paclobutrazol
uygulamalarında, diğer uygulamalara ve kontrole nazaran en iyi korm verimine (469 kg da
-1) ulaşılmıştır. Zeatin
3 mg L
-1 konsantrasyonda en iyi nodyum aktivasyonu göstermiştir (2.81 aktif nodyum/korm). Sonuç olarak
safran gelişimi önemli derecede dışarıdan toprağa uygulanan bitki gelişim düzenleyicilerinden etkilenmekte olup
uygulama metodu gelişimi hedeflenen bitki kısmı göz önüne alınarak geliştirilebilir



References

  • Amiri ME, 2008. Impact of animal manures and chemical fertilizers on yield components of saffron (Crocus sativus L.). American-Eurasian J. Agric&Environ. Sci., 4(3): 274-279.
  • Ault JR, Siqueira SS, 2008. Morphogenetic response of Lilium michiganense to four auxin-type plant growth regulators in vitro. HortScience, 43(6): 1922-1924.
  • Aytekin A, Acıkgoz AO, 2008. Hormone and microorganism treatments in the cultivation of saffron (Crocus sativus L.) plants. Molecules, 13: 1135-1146.
  • Bhagyalakshmi N, 1999. Factors influencing direct shoot regeneration from ovary explants of saffron. Plant Cell, Tissue and Organ Culture, 58: 205-211.
  • Cavusoglu A, Sulusoglu M, Erkal S, 2013. Plant regeneration and corm formation of saffron (Crocus sativus L.) in vitro. Research Journal of Biotechnology, 8(12): 128-133.
  • Colins GB, Vian WE, Phillips GC, 1978. Use of 4-Amino-3,5,6-trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Science, 18(2): 286-288.
  • Çavuşoğlu A, Sülüşoğlu M, 2012. Saffron corm and habitus growth under nitrogen fertilized field condition. Tıbbi ve Aromatik Bitkiler Sempozyumu Bildiriler Kitabı, Tokat, Türkiye. 156-161.
  • Devi K, Sharma M, Singh M, Ahuja PS, 2011. In vitro cormlet production and growth evaluation under greenhouse conditions in saffron (Crocus sativus L.)- A commercially important crop. Eng. Life Sci., 11(2): 189-194.
  • Devi K, Sharma M, Ahuja PS, 2014. Direct somatic embryogenesis with high frequency plantlet regeneration and succssive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany. 93: 207-216.
  • Francescangeli N, 2009. Paclobutrazol and cytokinin to produce iris (Iris x hollandica Tub.) in pots. Chilean Journal of Agricultural Research. 69 (4): 509-515.
  • IARC, 1991. Picloram. IARC monographs on the evaluation of carcinogenic risks to human, Lyon-France. 53: 481-493. Khan MA, Naseer S, Nagoo S, Nehvi FA, 2011. Behavior of saffron (Crocus sativus L.) corms for daughter corm production. Journal of Phytology. 3 (7): 47-49.
  • Krug BA, Whipker BE, McCall I, 2007. Caladium growth control with flurprimidol, paclobutrazol, and uniconazole. HortTechnology,17(3): 368-370.
  • Nagaraju V, Bhowmik G, Parthasarathy VA, 2002. Effect of paclobutrazol and sucrose on in vitro cormel formation in gladiolus. Acta Bot. Croat., 61(1): 27-33.
  • Negbi M, Dagan B, Dror A, Basker D, 1989. Growth, flowering, vegetative reproduction and dormancy in the saffron crocus (Crocus sativus L.). Isr. J. Bot., 38:95-113.
  • Plessner O, Ziv M, Negbi M, 1990. In vitro corm production in the saffron crocus (Crocus sativus L.). Plant Cell Tiss. Org. Cult., 20: 89-94.
  • Renau-Morata, B, Moya L, Nebauer SG, Segui-Simarro JM, Para-Vega V, Gomez MD, Molina RV, 2013. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Ind. Crop Prod., 46: 97-104.
  • Ríos JL, Recio MC, Giner RM, Máňez S, 1996. An update review of saffron and its active constituents. Phytother. Res., 10: 189-193.
  • Sampathu SR, Shivshankar S, Lewis YS, 1984. Saffron (Crocus sativus L.) cultivation, processing, chemistry and standardization. CRC Crit. Rev. Food Sci. Nutr., 20(2): 123-157.
  • Sharma KD, Rathour R, Sharma R, Goel S, Sharma TR, Singh BM, 2008. In vitro cormlet development in Crocus sativus. Biol. Plantarum, 52(4): 709-712.
  • Steinitz B, Cohen A, Goldberg Z, Kochba M, 1991. Precocious gladiolus corm formation in liquid shake cultures. Plant Cell, Tissue and Organ Culture, 26: 63-70.
  • Turhan H, Kahriman F, Egesel CO, Gul MK, 2007. The effects of different growing media on flowering and corm formation of saffron (Crocus sativus L.). African Journal of Biotechnology, 6(20): 2328-2332.
  • WHO, 2009. The WHO recommended classification of pesticides by hazard and guidelines to classification, Stuttgard-Germany, 39-46.
  • Yaacob JS, Yussof AIM, Taha RM, Mohajer S, 2012. Somatic embryogenesis and plant regeneration from bulb, leaf and root explants of African blue lily (Agapanthus praecox ssp. minimus). Australian Journal of Crop Science, 6(19): 1462-1470.
  • Zeybek E, Önde S, Kaya Z, 2012. Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron. Central Eur. J. Biol., 7(1): 138-145.
  • Zuyasna S, Hafsah S, Fajri R, Syahputra MO, Ramadhan G, 2012. The effect of picloram concentrations and explants types on the induction of somatic embryo on North Aceh Cocoa genotype. Proceedings of the 2nd Annual International Conference Syiah Kuala University & The 8th IMT-GT Uninet Biosciences Conference Banda Aceh., 2(1): 395-398.
There are 25 citations in total.

Details

Primary Language English
Journal Section Bitki Koruma / Plant Protection
Authors

Aysun Çavuşoğlu

Publication Date March 31, 2017
Submission Date June 30, 2016
Acceptance Date August 15, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Çavuşoğlu, A. (2017). The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.). Journal of the Institute of Science and Technology, 7(1), 17-22.
AMA Çavuşoğlu A. The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.). J. Inst. Sci. and Tech. March 2017;7(1):17-22.
Chicago Çavuşoğlu, Aysun. “The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus Sativus L.)”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 17-22.
EndNote Çavuşoğlu A (March 1, 2017) The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.). Journal of the Institute of Science and Technology 7 1 17–22.
IEEE A. Çavuşoğlu, “The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.)”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 17–22, 2017.
ISNAD Çavuşoğlu, Aysun. “The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus Sativus L.)”. Journal of the Institute of Science and Technology 7/1 (March 2017), 17-22.
JAMA Çavuşoğlu A. The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.). J. Inst. Sci. and Tech. 2017;7:17–22.
MLA Çavuşoğlu, Aysun. “The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus Sativus L.)”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 17-22.
Vancouver Çavuşoğlu A. The Effect of Exogenously Applied Plant Growth Regulators on Plant Development of Saffron (Crocus sativus L.). J. Inst. Sci. and Tech. 2017;7(1):17-22.