Research Article
BibTex RIS Cite

Investigation of Potential Usability of Native Bacillus thuringiensis Isolates in Biological Control of Disease Vector, Culex pipiens (Diptera:Culicidae)

Year 2017, Volume: 7 Issue: 1, 47 - 53, 31.03.2017

Abstract

Culex pipiens (Diptera: Culicidae) is primary vector of West Nile virus. Products of entomopathogen
bacterium
Bacillus thuringiensis (Bt) has effectively been used for decades for decreasing the chemical input into
the environment and
C. pipiens mediated diseases. In the current study, biocontrol potential of 14 different native Bt
isolates was investigated on C. pipiens larvae. Last instar larvae of C. pipens were subjected to spore-crystal protein
mixture (500 µg ml
-1) of 14 different Bt isolates carrying dipteran active cry genes. Of all the tested isolates, the
products of
Bt SY50.4 caused 80% mortality on the larvae. Although Bt SY56.3 showed lower insecticidal effect
than that of
Bt SY50.4, the activity of this isolate was higher than control. The other tested isolates didn’t show
signifcant mortality on larvae of the
C. pipiens. Bt SY50.4 was determined as promising an isolate based on the
effectiveness on the
C. pipiens larvae. Pupation and adult emergence periods of remaining larvae after treatment
were not signifcantly different when compared with the control



References

  • Azizoglu U, Ayvaz A, Yılmaz S, Temizgul, R, 2016. The synergic and antagonistic activity of Cry1Ab and Cry2Aa proteins against lepidopteran pests. Journal of Applied Entomology, 140: 223–227.
  • Azizoğlu U, Bulut S, Yılmaz S, 2012. Organik tarımda biyolojik mücadele; Entomopatojen biyoinsektisitler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28: 375–381.
  • Azizoğlu U, 2014. Bacillus thuringiensis SY49-1 suşuna ait cry1 ve cry2 genlerinin klonlanması, ifadesi ve böcek öldürücü etkilerinin belirlenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Biyoloji, Doktora Tezi, 157s.
  • Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Giuseppe GD, Conti B, 2014. Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitology Research, 114: 1011–1021.
  • Bone LW, 1989. Activity of Commercial Bacillus thuringiensis preparations against Trichostrogylus colubriformis and Nippostrogylus brasiliensis, Journal of Invertebrate Pathology, 53: 276–277.
  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos JF, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64: 49651–4972.
  • Bravo,A, Gill, SS, Soberon M, 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423–435.
  • Caminade C, Medlock JM, Ducheyne E,McIntryre KM, Leach S, Baylis M, Morse A, 2012. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. Journal of The Royal Society Interface, 9: 2708–2717.
  • Danısmazoglu M, Demir İ, Sevim A, Demirbağ Z, Nalçacioğlu R, 2012. An Investigation on the bacterial flora of Agriotes lineatus (Coleoptera: Elateridae) and pathogenicity of the flora members. Crop Protection, 40: 1–7.
  • Eski A, Özkan Çakici F, Güllü M, Muratoğlu H, Demirbağ Z, Demir İ, 2015. Identification and pathogenicity of bacteria from Mediterranean Corn Borer, Sesamia nonagrioides Lefèbvre, (Lepidoptera: Noctuidae). Turkish Journal of Biology,39: 31–48.
  • Foda MS, El-Beih Fawkia M, Moharam Maysa E, El-Gamal Nora NA, 2010. Physiological formation of mosquitocidal toxin by a novel Bacillus thuringiensis isolate under solid state fermentation. Life Science Journal, 7: 144–152.
  • Gobatto V, Giani SG, Camassola M, Dillon AJP, Specht A, Barros NM, 2010. Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Brazilian Jounal of Biology, 70: 1039–1046.
  • Jensen M, Mehlhorn H, 2009. Seventy-five years of Resochin® in the fight against malaria. Parasitology Research, 105: 609–627.
  • Kioulos I, Kampouraki A, Morou E, Skavdisc G, Vontas J, 2014. Insecticide resistance status in the major West Nile virus vector Culex pipiens from Greece. Pest Management Science, 70: 623–627.
  • Lacey LA, Goettel MS, 1995. Current developments in microbial control of insect pests and prospects for the early 1st century. Entomophaga, 40: 3–27.
  • Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al., 2014. Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Tropica, 132: 2–11.
  • Mehlhorn H, 2011. Parasites and their World records in their fight for survival. In:Mehlhorn H (ed) Progress in parasitology, Parasitology Research Monographs, 2: 41–68.
  • Özkan Çakici F, Sevim A, Demirbağ Z, Demir İ, 2014. Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents, Turkish Journal of Agriculture and Forestry,38: 99–110.
  • Prieto-Samsonov DL, 1997. Bacillus thuringiensis from diodiversity to biotechnology, Journal of Industrial Microbiology and Biotechnology, 19: 202–219.
  • Reisen WK, 2013. Ecology of West Nile virus in North America. Viruses, 5: 2079–2105.
  • Salehi Jouzani GR, Pourjan Abad A, Seifinejad A, Marzban R, Kariman K, Maleki B, 2008. Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensisstrains obtained from different ecosystems of Iran. Journal of Industrial Microbiology and Biotechnology, 35: 83–94.
  • Sevim A, Eryüzlü E, Demirbağ Z, Demir İ, 2012. A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp kurstaki. Journal of Microbiology and Biotechnology, 22: 133–140.
  • Sezen K, Demir İ, Demirbağ Z, 2007.Identification and pathogenicity of entomopathogenic bacteria from Common Cockchafer, Melolontha melolontha (Coleoptera : Scarabaeidae). New Zealand Journal of Crop and Horticultural Science, 35: 79–85.
  • Sanahuja G, Raviraj B, Twyman RM, Capell T, Christou P, 2011. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 9: 283–300.
  • Shu C, Zhang J, Chen G, Liang G, He K, Crickmore N, Huang D, Zhang J, Song F, 2013. Use of a pooled clone method to isolate a novel Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis. Journal of Invertebrate Pathology, 114: 31–33.
  • Sun H, Sun L, He J, Shen B, Yu J, Chen C, Yang M, Sun Y, Zhang D, Ma L, Zhu C, 2011. Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitology Research 109: 1689–1697.
  • Travers RS, Martin PAW, Reichelderfer CF, 1987. Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53: 1263–1266.
  • Visitsattapongse S, Sakdee S, Leetacheewa S, Angsuthanasombat C, 2014. Single-reversal charge in the B10-B11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. Larvae. Biochemical and Biophysical Research Communications 450: 948–952.
  • Yılmaz S, 2010. Çeşitli Habitatlardan İzole Edilen Bacillus thuringiensis suşlarının moleküler karakterizasyonu ve bazı zararlı böceklere karşı mücadelede kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 159 s.
  • Zeller HG, Schuffenecker I, 2004. West Nile Virus: an overview of its spread in Europe and the Mediterranean Basin in contrast to its spread in the Americas. European Journal of Clinical Microbiology and Infectious Diseases, 23: 147–156.

Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması

Year 2017, Volume: 7 Issue: 1, 47 - 53, 31.03.2017

Abstract

Culex pipiens (Diptera: Culicidae) Batı Nil Virüs’ünün başlıca vektörüdür. Kimyasal pestisit kullanımının
ve
C. pipiens kaynaklı hastalıkların azaltılması için entomopatojen bakteri Bacillus thuringiensis (Bt) ürünleri
yıllardır etkili bir şekilde kullanılmaktadır. Bu çalışmada, 14 farklı yerel
Bt izolatının C. pipiens larvaları üzerindeki
biyolojik mücadele potansiyeli araştırılmıştır. Dipteran spesifk
cry gen taşıyan 14 farklı Bt izolatının spor-kristal
protein karşımı (500 µg ml
-1) C. pipens’in son dönem larvalarına uygulanmıştır. Uygulanan izolatlar arasında Bt
SY50.4’ün spor-kristal protein karşımı % 80 larval ölüme sebep olmuştur. Bt SY56.3 izolatı, Bt SY50.4 kadar etkili
olmasa da kontrolden daha fazla ölüm oranına sebep olmuştur. Diğer izolatlar
C. pipens larvaları üzerinde önemli bir
etki göstermemiştir.
Bt SY50.4 izolatının C. pipiens üzerindeki etkinliği göz önüne alındığında biyolojik mücadele
açısından gelecek vaat ettiği belirlenmiştir. Uygulama sonrası yaşayan larvaların pupalaşma ve erginleşme süreçleri
kontrol grubu ile karşılaştırıldığında aralarında önemli bir fark olmadığı belirlenmiştir



References

  • Azizoglu U, Ayvaz A, Yılmaz S, Temizgul, R, 2016. The synergic and antagonistic activity of Cry1Ab and Cry2Aa proteins against lepidopteran pests. Journal of Applied Entomology, 140: 223–227.
  • Azizoğlu U, Bulut S, Yılmaz S, 2012. Organik tarımda biyolojik mücadele; Entomopatojen biyoinsektisitler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28: 375–381.
  • Azizoğlu U, 2014. Bacillus thuringiensis SY49-1 suşuna ait cry1 ve cry2 genlerinin klonlanması, ifadesi ve böcek öldürücü etkilerinin belirlenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Biyoloji, Doktora Tezi, 157s.
  • Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Giuseppe GD, Conti B, 2014. Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitology Research, 114: 1011–1021.
  • Bone LW, 1989. Activity of Commercial Bacillus thuringiensis preparations against Trichostrogylus colubriformis and Nippostrogylus brasiliensis, Journal of Invertebrate Pathology, 53: 276–277.
  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos JF, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64: 49651–4972.
  • Bravo,A, Gill, SS, Soberon M, 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423–435.
  • Caminade C, Medlock JM, Ducheyne E,McIntryre KM, Leach S, Baylis M, Morse A, 2012. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. Journal of The Royal Society Interface, 9: 2708–2717.
  • Danısmazoglu M, Demir İ, Sevim A, Demirbağ Z, Nalçacioğlu R, 2012. An Investigation on the bacterial flora of Agriotes lineatus (Coleoptera: Elateridae) and pathogenicity of the flora members. Crop Protection, 40: 1–7.
  • Eski A, Özkan Çakici F, Güllü M, Muratoğlu H, Demirbağ Z, Demir İ, 2015. Identification and pathogenicity of bacteria from Mediterranean Corn Borer, Sesamia nonagrioides Lefèbvre, (Lepidoptera: Noctuidae). Turkish Journal of Biology,39: 31–48.
  • Foda MS, El-Beih Fawkia M, Moharam Maysa E, El-Gamal Nora NA, 2010. Physiological formation of mosquitocidal toxin by a novel Bacillus thuringiensis isolate under solid state fermentation. Life Science Journal, 7: 144–152.
  • Gobatto V, Giani SG, Camassola M, Dillon AJP, Specht A, Barros NM, 2010. Bacillus thuringiensis isolates entomopathogenic for Culex quinquefasciatus (Diptera: Culicidae) and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Brazilian Jounal of Biology, 70: 1039–1046.
  • Jensen M, Mehlhorn H, 2009. Seventy-five years of Resochin® in the fight against malaria. Parasitology Research, 105: 609–627.
  • Kioulos I, Kampouraki A, Morou E, Skavdisc G, Vontas J, 2014. Insecticide resistance status in the major West Nile virus vector Culex pipiens from Greece. Pest Management Science, 70: 623–627.
  • Lacey LA, Goettel MS, 1995. Current developments in microbial control of insect pests and prospects for the early 1st century. Entomophaga, 40: 3–27.
  • Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al., 2014. Review: Improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Tropica, 132: 2–11.
  • Mehlhorn H, 2011. Parasites and their World records in their fight for survival. In:Mehlhorn H (ed) Progress in parasitology, Parasitology Research Monographs, 2: 41–68.
  • Özkan Çakici F, Sevim A, Demirbağ Z, Demir İ, 2014. Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents, Turkish Journal of Agriculture and Forestry,38: 99–110.
  • Prieto-Samsonov DL, 1997. Bacillus thuringiensis from diodiversity to biotechnology, Journal of Industrial Microbiology and Biotechnology, 19: 202–219.
  • Reisen WK, 2013. Ecology of West Nile virus in North America. Viruses, 5: 2079–2105.
  • Salehi Jouzani GR, Pourjan Abad A, Seifinejad A, Marzban R, Kariman K, Maleki B, 2008. Distribution and diversity of dipteran-specific cry and cyt genes in native Bacillus thuringiensisstrains obtained from different ecosystems of Iran. Journal of Industrial Microbiology and Biotechnology, 35: 83–94.
  • Sevim A, Eryüzlü E, Demirbağ Z, Demir İ, 2012. A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp kurstaki. Journal of Microbiology and Biotechnology, 22: 133–140.
  • Sezen K, Demir İ, Demirbağ Z, 2007.Identification and pathogenicity of entomopathogenic bacteria from Common Cockchafer, Melolontha melolontha (Coleoptera : Scarabaeidae). New Zealand Journal of Crop and Horticultural Science, 35: 79–85.
  • Sanahuja G, Raviraj B, Twyman RM, Capell T, Christou P, 2011. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnology Journal, 9: 283–300.
  • Shu C, Zhang J, Chen G, Liang G, He K, Crickmore N, Huang D, Zhang J, Song F, 2013. Use of a pooled clone method to isolate a novel Bacillus thuringiensis Cry2A toxin with activity against Ostrinia furnacalis. Journal of Invertebrate Pathology, 114: 31–33.
  • Sun H, Sun L, He J, Shen B, Yu J, Chen C, Yang M, Sun Y, Zhang D, Ma L, Zhu C, 2011. Cloning and characterization of ribosomal protein S29, a deltamethrin resistance associated gene from Culex pipiens pallens. Parasitology Research 109: 1689–1697.
  • Travers RS, Martin PAW, Reichelderfer CF, 1987. Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53: 1263–1266.
  • Visitsattapongse S, Sakdee S, Leetacheewa S, Angsuthanasombat C, 2014. Single-reversal charge in the B10-B11 receptor-binding loop of Bacillus thuringiensis Cry4Aa and Cry4Ba toxins reflects their different toxicity against Culex spp. Larvae. Biochemical and Biophysical Research Communications 450: 948–952.
  • Yılmaz S, 2010. Çeşitli Habitatlardan İzole Edilen Bacillus thuringiensis suşlarının moleküler karakterizasyonu ve bazı zararlı böceklere karşı mücadelede kullanımı. Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 159 s.
  • Zeller HG, Schuffenecker I, 2004. West Nile Virus: an overview of its spread in Europe and the Mediterranean Basin in contrast to its spread in the Americas. European Journal of Clinical Microbiology and Infectious Diseases, 23: 147–156.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Bitkisel ve Hayvansal Üretim / Plant and Animal Production
Authors

Uğur Azizoğlu This is me

Publication Date March 31, 2017
Submission Date April 7, 2016
Acceptance Date January 2, 2017
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Azizoğlu, U. (2017). Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması. Journal of the Institute of Science and Technology, 7(1), 47-53.
AMA Azizoğlu U. Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması. J. Inst. Sci. and Tech. March 2017;7(1):47-53.
Chicago Azizoğlu, Uğur. “Hastalık Taşıyıcısı Culex Pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus Thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 47-53.
EndNote Azizoğlu U (March 1, 2017) Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması. Journal of the Institute of Science and Technology 7 1 47–53.
IEEE U. Azizoğlu, “Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 47–53, 2017.
ISNAD Azizoğlu, Uğur. “Hastalık Taşıyıcısı Culex Pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus Thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması”. Journal of the Institute of Science and Technology 7/1 (March 2017), 47-53.
JAMA Azizoğlu U. Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması. J. Inst. Sci. and Tech. 2017;7:47–53.
MLA Azizoğlu, Uğur. “Hastalık Taşıyıcısı Culex Pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus Thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 47-53.
Vancouver Azizoğlu U. Hastalık Taşıyıcısı Culex pipiens (Diptera:Culicidae)’ in Biyolojik Mücadelesinde Yerel Bacillus thuringiensis İzolatlarının Kullanılabilme Potansiyelinin Araştırılması. J. Inst. Sci. and Tech. 2017;7(1):47-53.