Research Article
BibTex RIS Cite

Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri

Year 2017, Volume: 7 Issue: 1, 55 - 61, 31.03.2017

Abstract

İntertidal bölgede yaşayan deniz yosunları yüksek ışık, kuruma, radyasyon, yüksek sıcaklık ve tuzluluk gibi
çevresel streslere büyük oranda maruz kalmaktadır. Tuzluluk en önemli abiyotik streslerden biridir ve birçok açıdan
deniz yosunlarının fzyolojisini etkilemektedir. Bu nedenle, bu çalışma tuzluluğun bazı kırmızı deniz yosunlarında
fotosentetik performans üzerine etkilerini belirlemek amacıyla yapılmıştır. Örnekler Marmara Denizi’nin güney
kıyılarından toplanmış ve farklı tuz derişimlerinde (23, 33 ve 43 ppt) kültüre alınmıştır. Örneklerin fotosentetik
performansı fotosistem II’nin değişen klorofl floresansının ölçülmesiyle belirlenmiştir. Elde edilen veriler
çalışılan türlerde tuzluluğun fotosentetik performansı önemli ölçüde etkilediğini göstermiştir. 43 ppt’de
Porphyra
umbilicalis
haricinde çalışılan bütün türlerin maksimum elektron transfer oranı azalmıştır. Tuzluluğa karşı en
yüksek fotosentetik tolerans
P. umbilicalis türünde bulunmuştur


References

  • Bunsom C, Prathep A, 2012. Effects of salinity. light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research, 60: 169-178.
  • Dring MJ, Wagner A, Boeskov J, Lüning K, 1996. Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season and length of irradiation. European Journal of Phycology, 31: 293-302.
  • Eggert A, Nitschke U, West JA, Michalik D, Karsten U, 2007a. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. Journal of Experimental Marine Biology and Ecology, 343: 176–186.
  • Eggert A, Raimund S, Michalik D, West J, Karsten U, 2007b. Ecophysiological performance of the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature and salinity stress: growth responses and the osmotic role of mannitol. Phycologia, 46: 22–28.
  • Eilers PHC, Peeters JCH, 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42: 199-215.
  • Gao S, Huan L, Lu XP, Jin WH, Wang XL, Wu MJ, Wang GC, 2016. Photosynthetic responses to saline stress by the low intertidal macroalga, Sargassum fusiforme (Sargassaceae). Photosynthetica, DOI: 10.1007/s11099-015-0181-7
  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W, 1997a. Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Marine Ecology Progress Series, 149: 255-266.
  • Imchen T, 2012. Effect of temperature, salinity and biofilm on the zoospores settlements of Enteromorpha flexuosa (Wulfen) J. Agardh. Indian Journal of Geo-Marine Sciences, 41(4): 355-358.
  • Inskeep WP, Bloom PR, 1985. Extinction Coefficients of Chlorophyll a and b in N.N-Dimethylformamide and 80% Acetone. Plant Physiology, 77: 483-485.
  • Karsten U, Wiencke C, Kirst GO, 1991. The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability growth, photosynthesis and dark respiration. Journal of Plant Physiology, 138: 667–673
  • Karsten U, 2012. Seaweed acclimation to salinity and desiccation stress, in: Seaweed Biology. Springer, pp. 87-107.
  • Kirst GO, 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53.
  • Kirst GO, 1990. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53
  • Krause GH, Weis E, 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 313-349.
  • Lartigue J, Neill A, Hayden BL, Pulfer J, Cebrian J, 2003. The impact of salinity fluctuation on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75(4): 339-350.
  • Liang Z, Sun X, Wang F, Wang W, Liu F, 2013. Impact of environmental factors on the photosynthesis and respiration of young seedlings of Sargassum thunbergii (Sargassaceae. Phaeophyta). American Journal of Plant Sciences, 4: 27-33.
  • Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51: 659-668.
  • Nejrup LB, Pedersen MF, 2012. The effect of temporal variability in salinity on the invasive red alga Gracilaria vermivuophylla. European Journal of Phycolology, 47(3): 254-263.
  • Provasoli L, 1968. Media and prospects for the cultivation of marine algae: Cultures and collections of algae. Proceedings of the US-Japan Conference. Hakone. September 1966. The Japanese Society of Plant Physiologist, pp: 63-75.
  • Ramlov F, Souza JMC, Farias A, Maraschin M, Horta PA, Yokoya NS, 2012. Effects of temperature, salinity, irradiance and nutrient on the development of carposporelings and tetrasporophytes in Gracilaria domingesis (Kütz.) Sonder ex Dickie (Rhodophyta. Graciales). Botanica Marina, 55(3): 253-259.
  • Ruangchuay R, Notoya M, 2003. Physiological responses of blade and conchocelis of Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales. Rhodophyta) from Thailand in culture. Algae, 18(1): 21-28.
  • Sudhir P, Murthy SDS, 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(4): 481-486.
  • Thomsen MS, Staehr PA, Nyberg CD, Schwaerter S, Krause-Jensen D, Silliman BR, 2007. Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta. Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in future. Aquatic Invasions, 2: 83-94.
  • Tuğrul S, Salihoğlu İ, 2000. Marmara Denizi ve Türk Boğazlar Sisteminin Kimyasal Oşinografisi, Marmara Denizi 2000 Sempozyumu Bildiriler Kitabı, 11-12 Kasım 2000, İstanbul.
  • Yildiz G, Dere Ş, 2008. Effect of salinity stress on photosynthetic pigments in Ulva rigida (Chlorophyta). International Journal of Phycology and Phycochemistry, 4(2): 121-124

The Effects of Salinity on the Photosynthetic Performance of Red Seaweeds

Year 2017, Volume: 7 Issue: 1, 55 - 61, 31.03.2017

Abstract

Macroalgae living in the intertidal zone are exposed to a wide range of environmental stress, such as
high light, desiccation, radiation, high temperature and salinity. Salinity stress is one of the most signifcant abiotic
stresses and affects to vary aspect of macroalgae physiology. Therefore, this study performed to investigate the
effect of salinity on photosynthetic performance of some red seaweeds. The samples were collected from southern
region of the Marmara Sea and cultivated in different salinity concentration (23, 33 and 43 ppt). Photosynthetic
performance of samples were determined by measuring variable chlorophyll fluorescence of photosystem II. The
results indicated that, salinity signifcantly influenced photosynthetic performance of studied species. Maximum
electron transfer rate in the all studied species except for
Porphyra umbilicalis were reduced at 43 ppt salinity. The
highest salinity tolerance was found at
P. umbilicalis


References

  • Bunsom C, Prathep A, 2012. Effects of salinity. light intensity and sediment on growth, pigments, agar production and reproduction in Gracilaria tenuistipitata from Songkhla Lagoon in Thailand. Phycological Research, 60: 169-178.
  • Dring MJ, Wagner A, Boeskov J, Lüning K, 1996. Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: influence of collection depth and season and length of irradiation. European Journal of Phycology, 31: 293-302.
  • Eggert A, Nitschke U, West JA, Michalik D, Karsten U, 2007a. Acclimation of the intertidal red alga Bangiopsis subsimplex (Stylonematophyceae) to salinity changes. Journal of Experimental Marine Biology and Ecology, 343: 176–186.
  • Eggert A, Raimund S, Michalik D, West J, Karsten U, 2007b. Ecophysiological performance of the primitive red alga Dixoniella grisea (Rhodellophyceae) to irradiance, temperature and salinity stress: growth responses and the osmotic role of mannitol. Phycologia, 46: 22–28.
  • Eilers PHC, Peeters JCH, 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42: 199-215.
  • Gao S, Huan L, Lu XP, Jin WH, Wang XL, Wu MJ, Wang GC, 2016. Photosynthetic responses to saline stress by the low intertidal macroalga, Sargassum fusiforme (Sargassaceae). Photosynthetica, DOI: 10.1007/s11099-015-0181-7
  • Hanelt D, Melchersmann B, Wiencke C, Nultsch W, 1997a. Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Marine Ecology Progress Series, 149: 255-266.
  • Imchen T, 2012. Effect of temperature, salinity and biofilm on the zoospores settlements of Enteromorpha flexuosa (Wulfen) J. Agardh. Indian Journal of Geo-Marine Sciences, 41(4): 355-358.
  • Inskeep WP, Bloom PR, 1985. Extinction Coefficients of Chlorophyll a and b in N.N-Dimethylformamide and 80% Acetone. Plant Physiology, 77: 483-485.
  • Karsten U, Wiencke C, Kirst GO, 1991. The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability growth, photosynthesis and dark respiration. Journal of Plant Physiology, 138: 667–673
  • Karsten U, 2012. Seaweed acclimation to salinity and desiccation stress, in: Seaweed Biology. Springer, pp. 87-107.
  • Kirst GO, 1989. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53.
  • Kirst GO, 1990. Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 21–53
  • Krause GH, Weis E, 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42: 313-349.
  • Lartigue J, Neill A, Hayden BL, Pulfer J, Cebrian J, 2003. The impact of salinity fluctuation on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75(4): 339-350.
  • Liang Z, Sun X, Wang F, Wang W, Liu F, 2013. Impact of environmental factors on the photosynthesis and respiration of young seedlings of Sargassum thunbergii (Sargassaceae. Phaeophyta). American Journal of Plant Sciences, 4: 27-33.
  • Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51: 659-668.
  • Nejrup LB, Pedersen MF, 2012. The effect of temporal variability in salinity on the invasive red alga Gracilaria vermivuophylla. European Journal of Phycolology, 47(3): 254-263.
  • Provasoli L, 1968. Media and prospects for the cultivation of marine algae: Cultures and collections of algae. Proceedings of the US-Japan Conference. Hakone. September 1966. The Japanese Society of Plant Physiologist, pp: 63-75.
  • Ramlov F, Souza JMC, Farias A, Maraschin M, Horta PA, Yokoya NS, 2012. Effects of temperature, salinity, irradiance and nutrient on the development of carposporelings and tetrasporophytes in Gracilaria domingesis (Kütz.) Sonder ex Dickie (Rhodophyta. Graciales). Botanica Marina, 55(3): 253-259.
  • Ruangchuay R, Notoya M, 2003. Physiological responses of blade and conchocelis of Porphyra vietnamensis Tanaka et Pham-Hoang Ho (Bangiales. Rhodophyta) from Thailand in culture. Algae, 18(1): 21-28.
  • Sudhir P, Murthy SDS, 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(4): 481-486.
  • Thomsen MS, Staehr PA, Nyberg CD, Schwaerter S, Krause-Jensen D, Silliman BR, 2007. Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta. Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in future. Aquatic Invasions, 2: 83-94.
  • Tuğrul S, Salihoğlu İ, 2000. Marmara Denizi ve Türk Boğazlar Sisteminin Kimyasal Oşinografisi, Marmara Denizi 2000 Sempozyumu Bildiriler Kitabı, 11-12 Kasım 2000, İstanbul.
  • Yildiz G, Dere Ş, 2008. Effect of salinity stress on photosynthetic pigments in Ulva rigida (Chlorophyta). International Journal of Phycology and Phycochemistry, 4(2): 121-124
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Biyoloji / Biology
Authors

Gamze Yıldız

Şeyma Tiryaki This is me

Publication Date March 31, 2017
Submission Date June 14, 2016
Acceptance Date September 28, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Yıldız, G., & Tiryaki, Ş. (2017). Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri. Journal of the Institute of Science and Technology, 7(1), 55-61.
AMA Yıldız G, Tiryaki Ş. Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri. J. Inst. Sci. and Tech. March 2017;7(1):55-61.
Chicago Yıldız, Gamze, and Şeyma Tiryaki. “Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 55-61.
EndNote Yıldız G, Tiryaki Ş (March 1, 2017) Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri. Journal of the Institute of Science and Technology 7 1 55–61.
IEEE G. Yıldız and Ş. Tiryaki, “Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 55–61, 2017.
ISNAD Yıldız, Gamze - Tiryaki, Şeyma. “Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri”. Journal of the Institute of Science and Technology 7/1 (March 2017), 55-61.
JAMA Yıldız G, Tiryaki Ş. Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri. J. Inst. Sci. and Tech. 2017;7:55–61.
MLA Yıldız, Gamze and Şeyma Tiryaki. “Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 55-61.
Vancouver Yıldız G, Tiryaki Ş. Kırmızı Deniz Yosunlarının Fotosentetik Performansı Üzerine Tuzluluğun Etkileri. J. Inst. Sci. and Tech. 2017;7(1):55-61.