Research Article
BibTex RIS Cite

Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency

Year 2017, Volume: 7 Issue: 1, 125 - 134, 31.03.2017

Abstract

In this work, the modeling for the capacitance of a vertical parallel silicon solar cell has been carried
out with an analytical approach. A theory on the determination of the diffusion coeffcient of the excess minority
carriers of a silicon solar cell is presented. Based on the continuity equation, excess minority carrier’s density,
photocurrent density and photovoltage have been determined. Also, this study allows us to determine the influences
of incidence angles on the photocurrent density, the photovoltage and the diffusion capacitance (open and short
circuit). The objective of this work is to show the effects of incidence angles on the solar cell capacitance with these
electrical parameters.


References

  • Avraham G, Paul S, 1974. Vertical Multijunction Solar-Cell One-Dimensional Analysis; IEEE transactions on electron devices, vol. ed-21, no 6, 351-356.
  • Turgut G, Kocyigit A, Sonmez E, 2015. Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis, Chinese Physics B, Volume: 24 Issue: 10 Article Number: 107301.
  • Boer KW, 2010. Introduction to space charge effects in semiconductor, third edition,Springer-Verlag, 242 p.
  • Colinge JP et Colinge CA, 2002. Physics of semiconductor devices, sixth edition, Kluwer Academic Publishers, 311p
  • Diallo HL, Dieng B, Ly I, Dione MM, Ndiaye M, Lemrabott OH, Bako ZN, Wereme A and Sissoko G, 2012. Determination of the Recombination and Electrical Parameters of Vertical Multijunction Silicon Solar Cell. Res.J. Appl. Sci. Engineering Technol. Maxwell Scientific Organization, 3(7): 602-611, ISSN: 2040-7467.
  • Dieng A, Zerbo I, Wade M, Maiga AS and Sissoko G, 2011. Three-dimensional study of a polycrystalline silicon solar cell: the influence of the applied magnetic field on the electrical parameters, Semicond. Sci. Technol.9, 26 095023.
  • Diallo HL, Wereme A, Maiga AS and Sissoko G, 2008. New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell, Eur. Phys. J. Appl. Phys. 42 203–11.
  • Grove AS, 1967. Physics and Technology of Semiconductor Devices, First Edition, Wiley, New York. 174 p.
  • Ghitani HE and Martinuzzi S, 1989. Influence of dislocations on electrical properties of large grained polycrystalline silicon cells, J. App. Phys. 66(4), 1989, pp 1717-1726.
  • Hu CC, 2010. Modern semiconductor devices for integrated circuits, fifth edition, Pearson/prentice Hall, New Jersey, 216p.
  • Ly I, Ndiaye M, Wade M, Thiam N, Gueye S, Sissoko G, 2013. Concept of recombination velocity Sfcc at the junction of a bifacial silicon solar cell, in steady state, initiating the short-circuit condition, Research Journal Of Applied Sciences, Engineering And Technology 5(1): 203-208.
  • Lemrabott Z, Bako N, Wereme A and Sissoko G, 2012. Determination of the Recombination and Electrical Parameters of Vertical Multijunction Silicon Solar Cell, Res.J. Appl. Sci. Engineering Technol. Maxwell cientific Organization, 3(7): 602-611.
  • Mathieu H et Fanet H, 2009. Physique des semiconducteurs et des composants électroniques, sixth edition Dunod, 158p.
  • Mbodji S, Maiga AS, Dieng M, Wereme A and Sissoko G, 2010. Removal charge technique applied to a bifacial solar cell under constant magnetic field”, global journal of pure and applied sciences vol 16, N° 4, 469- 477.
  • Mandelis A, 1989. Coupled ac photocurrent and photothermal reflectance response theoryof semiconducting p-n junctions; J. Appl. Phys. 66(11), 5572-5583.
  • Nam LQ, Rodot M, Nijs J, Ghannam M and Coppye J, 1992. Réponse spectrale de photopiles de haut rendement au silicium multicristallin. J. Phys. III France 2, 1992, pp 1305-1316.
  • Noriaki H and Munakata C, 1987. Sample thickness dependence of minority carrier Lifetimes Measured using an ac photovoltaic Method; japanese journal of applied physics vol.26,no 12,pp. 233-236.
  • Noriaki H, Chusuke M and Hirofimi S, 1988. Calibration of minority carrier lifetimes measured with an ac photovoltaic method; japanese journal of applied physics vol.27,no 7, pp. 1322-1326.
  • Neamen DA, 2003. Semiconductor physics and devices: basic principles, Third edition, McGraw-Hill, 234p.
  • Topkaya R ,.Güngüneş H, Eryiğit Ş, Sagar E.Shirsath A.Yıldız,.Baykal A, 2016. Effect of bimetallic (NiandCo) substitution on magnetic properties of MnFe2O4 nano particles, doi:10.1016/j.ceramint.2016.05.177
  • Ricaud A, 1997. Photopiles Solaires, Physique des photopiles. First Edition. Lausanne, 148-155p.
  • Samb ML, Dieng M, Mbodji S, Mbow B, Thiam N, Barro FI, Sissoko G, 2009. Recombination parameters measurement of silicon solar cell under constant white bias light, Proceedings of the 24th European photovoltaic solar energy conference and exhibition, Hamburg, Germany (sept), 469 – 472.
  • Sane M , Sahin G, Barro FI, Maiga AS, 2014.Incidence angle and spectral effects on vertical junction silicon solar cell capacitance, Turk J Phys 38: 221 – 227.
  • Sahin G, Moustapha D, Mohamed AOEM, Moussa I N, Amary T, Grégoire S, 2015. Capacitance of Vertical Parallel Junction Silicon Solar Cell under Monochromatic Modulated Illumination, Journal of Applied Mathematics and Physics, 3: 1536-1543.
  • Wenham S R, Green MA, Watt ME et Corkish R, 2007. Applied Photovoltaic, 2nd edition, ARC Centre for Advanced Silicon Photovoltaic and Photonics, 316p.
  • Zeghbroeck BV, 2011. Principles of Semiconductor Devices, Third Edition Lausanne 147 p.

Modülasyon Frekansı Altında Geliş Açısının Dikey-Paralel Silisyum Güneş Pili Kapasitansına Etkisi

Year 2017, Volume: 7 Issue: 1, 125 - 134, 31.03.2017

Abstract

Bu çalışmada, analitik yaklaşımla dikey paralel silisyum güneş pili kapasitansı için modelleme yapıldı.
Silisyum güneş Pilinin aşırı azınlık taşıyıcıları difüzyon katsayısının belirlenmesi ile ilgili bir teori sunuldu.
Süreklilik denklemine bağlı olarak aşırı azınlık taşıyıcıların yoğunluğu, foto akım yoğunluğu ve foto gerilim
belirlendi. Ayrıca, bu çalışma foto akım yoğunluğu, foto gerilim ve difüzyon kapasitansına (açık ve kısa devre)
geliş açısının etkilerini belirlememize olanak sağlar. Bu çalışmanın amacı, bu elektriksel parametreler ile güneş
pili kapasitansına geliş açısının etkisini göstermektir.



References

  • Avraham G, Paul S, 1974. Vertical Multijunction Solar-Cell One-Dimensional Analysis; IEEE transactions on electron devices, vol. ed-21, no 6, 351-356.
  • Turgut G, Kocyigit A, Sonmez E, 2015. Influences of Pr and Ta doping concentration on the characteristic features of FTO thin film deposited by spray pyrolysis, Chinese Physics B, Volume: 24 Issue: 10 Article Number: 107301.
  • Boer KW, 2010. Introduction to space charge effects in semiconductor, third edition,Springer-Verlag, 242 p.
  • Colinge JP et Colinge CA, 2002. Physics of semiconductor devices, sixth edition, Kluwer Academic Publishers, 311p
  • Diallo HL, Dieng B, Ly I, Dione MM, Ndiaye M, Lemrabott OH, Bako ZN, Wereme A and Sissoko G, 2012. Determination of the Recombination and Electrical Parameters of Vertical Multijunction Silicon Solar Cell. Res.J. Appl. Sci. Engineering Technol. Maxwell Scientific Organization, 3(7): 602-611, ISSN: 2040-7467.
  • Dieng A, Zerbo I, Wade M, Maiga AS and Sissoko G, 2011. Three-dimensional study of a polycrystalline silicon solar cell: the influence of the applied magnetic field on the electrical parameters, Semicond. Sci. Technol.9, 26 095023.
  • Diallo HL, Wereme A, Maiga AS and Sissoko G, 2008. New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell, Eur. Phys. J. Appl. Phys. 42 203–11.
  • Grove AS, 1967. Physics and Technology of Semiconductor Devices, First Edition, Wiley, New York. 174 p.
  • Ghitani HE and Martinuzzi S, 1989. Influence of dislocations on electrical properties of large grained polycrystalline silicon cells, J. App. Phys. 66(4), 1989, pp 1717-1726.
  • Hu CC, 2010. Modern semiconductor devices for integrated circuits, fifth edition, Pearson/prentice Hall, New Jersey, 216p.
  • Ly I, Ndiaye M, Wade M, Thiam N, Gueye S, Sissoko G, 2013. Concept of recombination velocity Sfcc at the junction of a bifacial silicon solar cell, in steady state, initiating the short-circuit condition, Research Journal Of Applied Sciences, Engineering And Technology 5(1): 203-208.
  • Lemrabott Z, Bako N, Wereme A and Sissoko G, 2012. Determination of the Recombination and Electrical Parameters of Vertical Multijunction Silicon Solar Cell, Res.J. Appl. Sci. Engineering Technol. Maxwell cientific Organization, 3(7): 602-611.
  • Mathieu H et Fanet H, 2009. Physique des semiconducteurs et des composants électroniques, sixth edition Dunod, 158p.
  • Mbodji S, Maiga AS, Dieng M, Wereme A and Sissoko G, 2010. Removal charge technique applied to a bifacial solar cell under constant magnetic field”, global journal of pure and applied sciences vol 16, N° 4, 469- 477.
  • Mandelis A, 1989. Coupled ac photocurrent and photothermal reflectance response theoryof semiconducting p-n junctions; J. Appl. Phys. 66(11), 5572-5583.
  • Nam LQ, Rodot M, Nijs J, Ghannam M and Coppye J, 1992. Réponse spectrale de photopiles de haut rendement au silicium multicristallin. J. Phys. III France 2, 1992, pp 1305-1316.
  • Noriaki H and Munakata C, 1987. Sample thickness dependence of minority carrier Lifetimes Measured using an ac photovoltaic Method; japanese journal of applied physics vol.26,no 12,pp. 233-236.
  • Noriaki H, Chusuke M and Hirofimi S, 1988. Calibration of minority carrier lifetimes measured with an ac photovoltaic method; japanese journal of applied physics vol.27,no 7, pp. 1322-1326.
  • Neamen DA, 2003. Semiconductor physics and devices: basic principles, Third edition, McGraw-Hill, 234p.
  • Topkaya R ,.Güngüneş H, Eryiğit Ş, Sagar E.Shirsath A.Yıldız,.Baykal A, 2016. Effect of bimetallic (NiandCo) substitution on magnetic properties of MnFe2O4 nano particles, doi:10.1016/j.ceramint.2016.05.177
  • Ricaud A, 1997. Photopiles Solaires, Physique des photopiles. First Edition. Lausanne, 148-155p.
  • Samb ML, Dieng M, Mbodji S, Mbow B, Thiam N, Barro FI, Sissoko G, 2009. Recombination parameters measurement of silicon solar cell under constant white bias light, Proceedings of the 24th European photovoltaic solar energy conference and exhibition, Hamburg, Germany (sept), 469 – 472.
  • Sane M , Sahin G, Barro FI, Maiga AS, 2014.Incidence angle and spectral effects on vertical junction silicon solar cell capacitance, Turk J Phys 38: 221 – 227.
  • Sahin G, Moustapha D, Mohamed AOEM, Moussa I N, Amary T, Grégoire S, 2015. Capacitance of Vertical Parallel Junction Silicon Solar Cell under Monochromatic Modulated Illumination, Journal of Applied Mathematics and Physics, 3: 1536-1543.
  • Wenham S R, Green MA, Watt ME et Corkish R, 2007. Applied Photovoltaic, 2nd edition, ARC Centre for Advanced Silicon Photovoltaic and Photonics, 316p.
  • Zeghbroeck BV, 2011. Principles of Semiconductor Devices, Third Edition Lausanne 147 p.
There are 26 citations in total.

Details

Primary Language English
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Gökhan Şahin This is me

Publication Date March 31, 2017
Submission Date March 28, 2016
Acceptance Date July 24, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Şahin, G. (2017). Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency. Journal of the Institute of Science and Technology, 7(1), 125-134.
AMA Şahin G. Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency. J. Inst. Sci. and Tech. March 2017;7(1):125-134.
Chicago Şahin, Gökhan. “Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 125-34.
EndNote Şahin G (March 1, 2017) Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency. Journal of the Institute of Science and Technology 7 1 125–134.
IEEE G. Şahin, “Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 125–134, 2017.
ISNAD Şahin, Gökhan. “Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency”. Journal of the Institute of Science and Technology 7/1 (March 2017), 125-134.
JAMA Şahin G. Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency. J. Inst. Sci. and Tech. 2017;7:125–134.
MLA Şahin, Gökhan. “Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 125-34.
Vancouver Şahin G. Effect of Incidence Angle on Capacitance of Vertical Parallel Silicon Solar Cell under Modulation Frequency. J. Inst. Sci. and Tech. 2017;7(1):125-34.