Research Article
BibTex RIS Cite

Removal of Cr(III) from Synthetic Wastewater by using a Strong Cation Exchange Resin

Year 2017, Volume: 7 Issue: 1, 225 - 236, 31.03.2017

Abstract

Cr(III), is toxic heavy metal present in wastewaters from a variety of industries. In this study,
chromium removal was investigated using ion exchange method from aqueous solutions. For this purpose, strong
cation exchanger resin Dowex 88 was used as sorbent. During the experimental studies, the effect of parameters
such as pH, temperature, resin dosage and sorption time on chromium removal was observed. Thermodynamic,
isotherm and kinetic studies were also performed. In the isotherm studies, Langmuir and Freundlich isotherm
models were applied and it was occured that the experimental data ft to both isotherm models. Thermodynamic
results showed that the chromium sorption onto Dowex 88 resin had exothermic and spontaneous. As a result of the
kinetic studies observed that the sorption data follows frst-order reversible kinetics.


References

  • Alyüz B, Veli S, 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167: 482–488.
  • Aşçı Y, Nurbaş M, Açıkel Sağ Y, 2008. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. Journal of Hazardous Materials, 154: 663-673.
  • Aşçı Y, 2012. Adsorption of Zn(II) onto Turkish soil: equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 45:61–69.
  • Aşçı Y, Kaya Ş, 2016. Sorption of cobalt(II) from an aqueous medium using Amberlite 200C and Dowex 88 resins: Equilibrium and kinetic studies. Desalination and Water Treatment, 57: 13091–1310.
  • ATSDR, 2016. Agency for Toxic Substances & Disease Registry, http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=17. (Erişim tarihi: 23 Nisan, 2016).
  • Ball, JW, Nordstrom, DK, 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. Journal of Chemical Engineering Data, 43:895-918.
  • Bhatt RR, Bhavna AS, 2015. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arabian Journal of Chemistry, 8: 414-426
  • Dizge N, Keskinler B, Barlas H, 2009. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. Journal of Hazardous Materials, 167:915–926.
  • Du YJ, Hayashi S, 2006. A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Applied Clay Science, 32: 14-24.
  • Freundlich H, 1907. Ueber die adsorption in Loesungen. Zeitschrift fr Physikalische Chemie, 57A:385-470.
  • Gode F, Pehlivan E, 2003. A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. Journal of Hazardous Materials, B100:231–243.
  • Gode F, Pehlivan E, 2006. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. Journal of Hazardous Materials, 136, 330-337.
  • Gode F, Pehlivan E, 2007. Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. Bioresource Technology, 98:904–911.
  • Gupta SS, Bhattacharyya KG, 2006. Removal of Cr(III) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128:247-257.
  • Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M, 2009. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adadsorption onto natural zeolite. Chemical Engineering Journal, 145:496-504.
  • Jain CK, 2001. Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetics. Hydrological Sciences Journal, 46:419–434.
  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni CA, 1999. Critical Assessment of Chromium in the Environment. Critical Reviews in Environmental Science and Technology, 29:1-46.
  • Kocaoba S, Akcin G, 2005. Removal of chromium (III) and cadmium (II) from aqueous solutions. Desalination, 180:151-156.
  • Kotas J, Stasicka Z, 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107:263-283.
  • Kumral E, 2007. Speciation of Chromium in Waters via Sol-Gel Preconcentratıon Prior to Atomic Spectrometric Determination. İzmir Institute of Technology, Master Thesis, 63s.
  • Langmuir L, 1916. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38:2221-2295.
  • Mishra PC, Patel RK, 2009. Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168:319-325
  • Mohan D, Pittman CU, 2006. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, B137:762-811.
  • Mustafa S, Shah KH, Naeem A, Waseem M, Tahir M, 2008. Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na). Journal of Hazardous Materials, 160:1-5.
  • Özcan AS, Gök Ö, Özcan A, 2009. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161:499-509.
  • Panchenkov GM, Lebedev GM, 1976. Chemical Kinetics and Catalysis. Mir Publishers, Moscow. p. 431.
  • Pehlivan E, Altun T, 2006. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials, 134:149-156.
  • Pehlivan E, Çetin S, 2009. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. Journal of Hazardous Materials, 163: 448–453.
  • Rengaraj S, Yeon KH, Moon SH, 2001. Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 87:273-287.
  • Rengaraj S, Joo CK, Kim Y, Yi J, 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102:257-275.
  • Richard FC, Bourg ACM, 1991. Aqueous geochemistry of chromium: a review. Water Research, 25:807-816.
  • Shi T, Wang Z, Liu Y, Jia S, Changming D, 2009. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Journal of Hazardous Materials, 161:900–906.
  • Treybal RE, 1981. Mass-Transfer Operations. McGraw-Hill Chemical Engineering Series.

Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi

Year 2017, Volume: 7 Issue: 1, 225 - 236, 31.03.2017

Abstract

Cr(III), çeşitli endüstriyel atıksularda var olan toksik ağır metallerden biridir. Bu çalışmada sulu
çözeltilerden krom giderimi iyon değişimi yöntemiyle araştırılmıştır. Bu amaçla sorbent olarak güçlü bir katyon
değiştirici reçine olan Dowex 88 kullanılmıştır. Deneysel çalışmalarda pH, sıcaklık, reçine miktarı ve sorpsiyon
süresi gibi parametrelerin krom giderimine etkisi incelenmiştir. Ayrıca, termodinamik, izoterm ve kinetik çalışmalar
yapılmıştır. İzoterm çalışmalarında Langmuir ve Freundlich izoterm modelleri denenmiş ve deneysel verilerin her
iki izoterm modeline de uyduğu görülmüştür. Termodinamik sonuçlar, Dowex 88 reçinesine krom sorpsiyonunun
ekzotermik ve kendiliğinden gerçekleştiğini göstermiştir. Kinetik çalışmalar sonucunda ise sorpsiyon verilerinin
tersinir birinci mertebe kinetik modele uyduğu gözlenmiştir.


References

  • Alyüz B, Veli S, 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167: 482–488.
  • Aşçı Y, Nurbaş M, Açıkel Sağ Y, 2008. A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. Journal of Hazardous Materials, 154: 663-673.
  • Aşçı Y, 2012. Adsorption of Zn(II) onto Turkish soil: equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 45:61–69.
  • Aşçı Y, Kaya Ş, 2016. Sorption of cobalt(II) from an aqueous medium using Amberlite 200C and Dowex 88 resins: Equilibrium and kinetic studies. Desalination and Water Treatment, 57: 13091–1310.
  • ATSDR, 2016. Agency for Toxic Substances & Disease Registry, http://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=17. (Erişim tarihi: 23 Nisan, 2016).
  • Ball, JW, Nordstrom, DK, 1998. Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. Journal of Chemical Engineering Data, 43:895-918.
  • Bhatt RR, Bhavna AS, 2015. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arabian Journal of Chemistry, 8: 414-426
  • Dizge N, Keskinler B, Barlas H, 2009. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. Journal of Hazardous Materials, 167:915–926.
  • Du YJ, Hayashi S, 2006. A study on sorption properties of Cd2+ on Ariake clay for evaluating its potential use as a landfill barrier material. Applied Clay Science, 32: 14-24.
  • Freundlich H, 1907. Ueber die adsorption in Loesungen. Zeitschrift fr Physikalische Chemie, 57A:385-470.
  • Gode F, Pehlivan E, 2003. A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. Journal of Hazardous Materials, B100:231–243.
  • Gode F, Pehlivan E, 2006. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. Journal of Hazardous Materials, 136, 330-337.
  • Gode F, Pehlivan E, 2007. Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. Bioresource Technology, 98:904–911.
  • Gupta SS, Bhattacharyya KG, 2006. Removal of Cr(III) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, 128:247-257.
  • Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M, 2009. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adadsorption onto natural zeolite. Chemical Engineering Journal, 145:496-504.
  • Jain CK, 2001. Adsorption of zinc onto bed sediments of the River Ganga: adsorption models and kinetics. Hydrological Sciences Journal, 46:419–434.
  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni CA, 1999. Critical Assessment of Chromium in the Environment. Critical Reviews in Environmental Science and Technology, 29:1-46.
  • Kocaoba S, Akcin G, 2005. Removal of chromium (III) and cadmium (II) from aqueous solutions. Desalination, 180:151-156.
  • Kotas J, Stasicka Z, 2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107:263-283.
  • Kumral E, 2007. Speciation of Chromium in Waters via Sol-Gel Preconcentratıon Prior to Atomic Spectrometric Determination. İzmir Institute of Technology, Master Thesis, 63s.
  • Langmuir L, 1916. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38:2221-2295.
  • Mishra PC, Patel RK, 2009. Removal of lead and zinc ions from water by low cost adsorbents. Journal of Hazardous Materials, 168:319-325
  • Mohan D, Pittman CU, 2006. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, B137:762-811.
  • Mustafa S, Shah KH, Naeem A, Waseem M, Tahir M, 2008. Chromium (III) removal by weak acid exchanger Amberlite IRC-50 (Na). Journal of Hazardous Materials, 160:1-5.
  • Özcan AS, Gök Ö, Özcan A, 2009. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161:499-509.
  • Panchenkov GM, Lebedev GM, 1976. Chemical Kinetics and Catalysis. Mir Publishers, Moscow. p. 431.
  • Pehlivan E, Altun T, 2006. The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin. Journal of Hazardous Materials, 134:149-156.
  • Pehlivan E, Çetin S, 2009. Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–visible spectrophotometer. Journal of Hazardous Materials, 163: 448–453.
  • Rengaraj S, Yeon KH, Moon SH, 2001. Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 87:273-287.
  • Rengaraj S, Joo CK, Kim Y, Yi J, 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102:257-275.
  • Richard FC, Bourg ACM, 1991. Aqueous geochemistry of chromium: a review. Water Research, 25:807-816.
  • Shi T, Wang Z, Liu Y, Jia S, Changming D, 2009. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Journal of Hazardous Materials, 161:900–906.
  • Treybal RE, 1981. Mass-Transfer Operations. McGraw-Hill Chemical Engineering Series.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Kimya / Chemistry
Authors

Yeliz Aşçı

Publication Date March 31, 2017
Submission Date April 28, 2016
Acceptance Date September 28, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Aşçı, Y. (2017). Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi. Journal of the Institute of Science and Technology, 7(1), 225-236.
AMA Aşçı Y. Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi. J. Inst. Sci. and Tech. March 2017;7(1):225-236.
Chicago Aşçı, Yeliz. “Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 225-36.
EndNote Aşçı Y (March 1, 2017) Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi. Journal of the Institute of Science and Technology 7 1 225–236.
IEEE Y. Aşçı, “Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 225–236, 2017.
ISNAD Aşçı, Yeliz. “Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi”. Journal of the Institute of Science and Technology 7/1 (March 2017), 225-236.
JAMA Aşçı Y. Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi. J. Inst. Sci. and Tech. 2017;7:225–236.
MLA Aşçı, Yeliz. “Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 225-36.
Vancouver Aşçı Y. Güçlü Bir Katyon Değişim Reçinesi Kullanarak Sentetik Atıksudan Cr(III)’ün Giderimi. J. Inst. Sci. and Tech. 2017;7(1):225-36.