Review
BibTex RIS Cite

Flow Boiling Characteristics of Nanofluids in Microchannels

Year 2017, Volume: 7 Issue: 1, 237 - 249, 01.07.2017

Abstract

Due to the ever increasing heat flux values, traditional heat transfer enhancement methods fail to
satisfy on cooling of micro systems. Flow boiling heat transfer has a great potential for the applications requiring
high heat removal rates because high heat transfer coeffcients are achieved in addition to surface temperature to
be nearly constant. On the other hand, use of nanofluids instead of traditional fluids is thought to be an important
alternative for high thermal performance. Although there are numerous study on the single phase heat transfer of
nanofluids, a few number of study concerning with the flow boiling heat transfer of nanofluids in microchannels
exists. In the literature, there are some conflicts on whether the use of nanofluids in flow boiling is appropriate or
not. Thus, more detailed studies on the usability of nanofluids in boiling flow conditions are required. In this study,
experimental studies conducted by with nanofluids were reviewed, and the advantages and disadvantages of the
using nanofluids in boiling flows in microchannels were determined.


References

  • Abedini E, Behzadmehr A, Rajabnia H, Sarvari SMH, Mansouri SH, 2013. Experimental investigation and comparison of subcooled flow boiling of TiO2 nanofluid in a vertical and horizontal tube, Proc. IMechE Part C J. Mech. Eng. Sci. 227 (8):1742-1753.
  • Ahn HS, Kim H, Jo H, Kang SH, Chang WP, Kim MH, 2010. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J. Multiph. Flow 36:375-384.
  • Ahn HS ve Kim MH, 2011. The effect of micro/nanoscale structures on CHF enhancements, Nuclear Engineering and Technology 43(3):205:216.
  • Bahiraei M, ve Hangi M, 2015. Flow and heat Transfer characteristics of magnetic nanofluids: A review, Journal of Magnetism and Magnetic Materials 374: 125-138.
  • Boudouh M, Gualous HL, De Labachelerie M, 2010. Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Appl. Therm. Eng. 30 (17-18): 2619-2631.
  • Chehade AA, Gualous HL, Le Masson S, Fardoun F, Besqet A, 2013. Boiling local heat transfer enhancement in minichannels using nanofluids, Nanoscale Res. Lett. 8:1-20.
  • Choi SUS, 1995. Enhancing thermal conductivity of fluids with nanoparticle, ASME FED 231:99-105.
  • Duursma G, Sefiane K, Dehaene A, Harmand S, Wang Y, 2015. Flow and Heat Transfer of Single-and Two-Phase Boiling of Nanofluids in Microchannels, Heat Transfer Engineering 36(14-15):1252-1265.
  • Edel Z, 2013. Experimental investigation of regular fluids and nanofluids during flow boiling in a single microchannel at different heat fluxes and mass fluxes, Master’s Thesis, Michigan Technological University.
  • Edel Z, ve Mukherjee A, 2015. Flow Boiling Dynamics of Water and Nanofluids in a Single Microchannel at Different Heat Fluxes, Journal of Heat Transfer 137:011501.
  • Fang X, Wang R, Chen W, Zhang H, Ma C, 2015. A review of flow boiling heat transfer of nanofluids, Applied Thermal Engineering 91:1003-1017..
  • Faukner D, Khotan M, Shekarriz R, 2003. Practical design of a 1000 W/cm2 cooling system, in: Proc. of 19th IEEE SEMI-THERM Symposium, San Jose, CA, March 11-13.
  • Henderson K, Park Y-G, Liu LP, 2010. Flow boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Transf. 53 (5-6):944-951.
  • Kandlikar GS et al., 2013. Heat Transfer in Microchannels-2012 Status and Research Needs, Journal of Heat Transfer 135: 091001.
  • Kandlikar GS et al., 2016. Heat Transfer and Fluid Flow in Microchannels and Minichannels, Second Edition, Butterworth-Heinemann, 592 p.
  • Kandlikar SG, 2016. Mechanistic Considerations for Enhancing Flow Boiling Heat Transfer in Microchannels, Journal of Heat Transfer 138: 021504.
  • Kim SJ, McKrell T, Buongiorno J, Hu L-W, 2008. Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure, ASME J. Heat Transf. 130:044501.
  • Kim SJ, McKrell T, Buongiorno J, Hu L-W, 2009. Experimental study of flow critical heat flux in aluminaewater, zinc-oxideewater and diamondewater nanofluids, J. Heat Transf. 131:043204.
  • Kim SJ, McKrell T, Buongiorno J, Hu LW, 2010. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des. 240: 1186-1194.
  • Kim TI, Chang WJ, Chang SH, 2010. An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid, Int. J. Heat Mass Transf. 53 (5-6):1015-1022.
  • Lee J, ve Mudawar I, 2007. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer 50: 452–463.
  • Lee SW, Kim KM, Bang IC, 2013. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, Int. J. Heat Mass Transf. 56:348-356.
  • Lee SW, Park SD, Kang S, Kim SM, Seo H, Lee DW, Bang IC, 2012. Critical heat flux enhancement in low flow boiling of Al2O3 and SIC nanofluids under low pressure and low flow conditions, Nucl. Eng. Technol. 44 (4SI):429-436.
  • Lee T, Lee JH, Jeong YH, 2013. Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions, Int. J. Heat Mass Transf. 56:101-106.
  • Morshed, AKMM, Paul TC, Khan JA, 2013. Effect of Al2O3 deposition on flow boiling performance of water in a microchannel, Experimental Thermal and Fluid Science 47:6-13.
  • Peng H, Ding GL, Jiang WT, Hu HT, Gao YF, 2009. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrig. 32:1259-1270.
  • Rana KB, Agrawal GD, Mathura J, Puli U, 2014. Measurement of void fraction in flow boiling of ZnOewater nanofluids using image processing technique, Nucl. Eng. Des. 270:217-226.
  • Rana KB, Rajvanshi AK, Agrawal GD, 2013. A visualization study of flow boiling heat transfer with nanofluids, J. Vis. 16 (2):133-143.
  • Ritchey SN, Weibel JA, ve Garimella SV, 2014. Local measurement of flow boiling heat transfer in an array of non-uniformly heated microchannels, International Journal of Heat and Mass Transfer 71: 206–216.
  • Sarafraz MM, Hormozi F, 2014. Scale formation and subcooled flow boiling heat transfer of CuO/water nanofluid inside the vertical annulus, Exp. Therm. Fluid Sci. 52:205-214.
  • Sun B, Yang D, 2014. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube, Int. J. Refrig. 38:206-214.
  • Vafaei S, ve Wen D, 2010. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. Journal of Heat Transfer 132:102404.
  • Vafaei S, ve Wen D, 2011. Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. Journal of Nanoparticle Research 13:1063–1073.
  • Vafaei S, ve Wen D, 2014. Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations. Chemical Engineering Research and Design 92:2339-2351.
  • Wu X, Wu H, Cheng P, 2009. Pressure Drop and Heat Transfer of Al2O3-H2O Nanofluids through Silicon Microchannels, J. Micromech. Microeng. 19(10):105020.
  • Xu L, ve Xu J, 2012. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannels, International Journal of Heat and Mass Transfer 55:5673-5686.

Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri

Year 2017, Volume: 7 Issue: 1, 237 - 249, 01.07.2017

Abstract

Mikrocihazlarda giderek artan ısı akısı değerleri nedeniyle geleneksel ısı transfer arttırım yöntemleri
mikrosistemlerin soğutulmasında yetersiz kalmaktadır. Kaynama ile ısı transferi yüksek ısı transfer katsayılarının
elde edilmesi yanında yüzey sıcaklığının neredeyse sabit olması nedeniyle yüksek ısı atımını gerektiren mikrosistem
uygulamaları için önemli bir potansiyele sahiptir. Diğer yandan geleneksel akışkanlar yerine nanoakışkanların
kullanımı yüksek ısıl performans için önemli bir alternatif olarak düşünülmektedir. Nanoakışkanların tek fazlı
ısı transferiyle ilgili birçok çalışma olmasına rağmen mikrokanallarda kaynamalı akış durumunda nanoakışkan
kullanımıyla ilgili sınırlı sayıda çalışma mevcuttur. Literatürde nanoakışkanların kaynamalı akışta kullanımının bazı
çalışmalara göre uygun olup olmadığı yönünde belirsizlikler vardır. Bu nedenle nanoakışkanların kaynamalı akış
şartlarında kullanılabilirliği ile ilgili daha kapsamlı çalışmalara ihtiyaç vardır. Bu çalışmada, farklı nanoakışkanlar
ile yapılan deneysel çalışmalar derlenmiş ve nanoakışkanların mikrokanallarda kaynamalı akışta kullanımının
avantaj ve dezavantajları belirlenmeye çalışılmıştır.



References

  • Abedini E, Behzadmehr A, Rajabnia H, Sarvari SMH, Mansouri SH, 2013. Experimental investigation and comparison of subcooled flow boiling of TiO2 nanofluid in a vertical and horizontal tube, Proc. IMechE Part C J. Mech. Eng. Sci. 227 (8):1742-1753.
  • Ahn HS, Kim H, Jo H, Kang SH, Chang WP, Kim MH, 2010. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J. Multiph. Flow 36:375-384.
  • Ahn HS ve Kim MH, 2011. The effect of micro/nanoscale structures on CHF enhancements, Nuclear Engineering and Technology 43(3):205:216.
  • Bahiraei M, ve Hangi M, 2015. Flow and heat Transfer characteristics of magnetic nanofluids: A review, Journal of Magnetism and Magnetic Materials 374: 125-138.
  • Boudouh M, Gualous HL, De Labachelerie M, 2010. Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Appl. Therm. Eng. 30 (17-18): 2619-2631.
  • Chehade AA, Gualous HL, Le Masson S, Fardoun F, Besqet A, 2013. Boiling local heat transfer enhancement in minichannels using nanofluids, Nanoscale Res. Lett. 8:1-20.
  • Choi SUS, 1995. Enhancing thermal conductivity of fluids with nanoparticle, ASME FED 231:99-105.
  • Duursma G, Sefiane K, Dehaene A, Harmand S, Wang Y, 2015. Flow and Heat Transfer of Single-and Two-Phase Boiling of Nanofluids in Microchannels, Heat Transfer Engineering 36(14-15):1252-1265.
  • Edel Z, 2013. Experimental investigation of regular fluids and nanofluids during flow boiling in a single microchannel at different heat fluxes and mass fluxes, Master’s Thesis, Michigan Technological University.
  • Edel Z, ve Mukherjee A, 2015. Flow Boiling Dynamics of Water and Nanofluids in a Single Microchannel at Different Heat Fluxes, Journal of Heat Transfer 137:011501.
  • Fang X, Wang R, Chen W, Zhang H, Ma C, 2015. A review of flow boiling heat transfer of nanofluids, Applied Thermal Engineering 91:1003-1017..
  • Faukner D, Khotan M, Shekarriz R, 2003. Practical design of a 1000 W/cm2 cooling system, in: Proc. of 19th IEEE SEMI-THERM Symposium, San Jose, CA, March 11-13.
  • Henderson K, Park Y-G, Liu LP, 2010. Flow boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Transf. 53 (5-6):944-951.
  • Kandlikar GS et al., 2013. Heat Transfer in Microchannels-2012 Status and Research Needs, Journal of Heat Transfer 135: 091001.
  • Kandlikar GS et al., 2016. Heat Transfer and Fluid Flow in Microchannels and Minichannels, Second Edition, Butterworth-Heinemann, 592 p.
  • Kandlikar SG, 2016. Mechanistic Considerations for Enhancing Flow Boiling Heat Transfer in Microchannels, Journal of Heat Transfer 138: 021504.
  • Kim SJ, McKrell T, Buongiorno J, Hu L-W, 2008. Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure, ASME J. Heat Transf. 130:044501.
  • Kim SJ, McKrell T, Buongiorno J, Hu L-W, 2009. Experimental study of flow critical heat flux in aluminaewater, zinc-oxideewater and diamondewater nanofluids, J. Heat Transf. 131:043204.
  • Kim SJ, McKrell T, Buongiorno J, Hu LW, 2010. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nucl. Eng. Des. 240: 1186-1194.
  • Kim TI, Chang WJ, Chang SH, 2010. An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid, Int. J. Heat Mass Transf. 53 (5-6):1015-1022.
  • Lee J, ve Mudawar I, 2007. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer 50: 452–463.
  • Lee SW, Kim KM, Bang IC, 2013. Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, Int. J. Heat Mass Transf. 56:348-356.
  • Lee SW, Park SD, Kang S, Kim SM, Seo H, Lee DW, Bang IC, 2012. Critical heat flux enhancement in low flow boiling of Al2O3 and SIC nanofluids under low pressure and low flow conditions, Nucl. Eng. Technol. 44 (4SI):429-436.
  • Lee T, Lee JH, Jeong YH, 2013. Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions, Int. J. Heat Mass Transf. 56:101-106.
  • Morshed, AKMM, Paul TC, Khan JA, 2013. Effect of Al2O3 deposition on flow boiling performance of water in a microchannel, Experimental Thermal and Fluid Science 47:6-13.
  • Peng H, Ding GL, Jiang WT, Hu HT, Gao YF, 2009. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrig. 32:1259-1270.
  • Rana KB, Agrawal GD, Mathura J, Puli U, 2014. Measurement of void fraction in flow boiling of ZnOewater nanofluids using image processing technique, Nucl. Eng. Des. 270:217-226.
  • Rana KB, Rajvanshi AK, Agrawal GD, 2013. A visualization study of flow boiling heat transfer with nanofluids, J. Vis. 16 (2):133-143.
  • Ritchey SN, Weibel JA, ve Garimella SV, 2014. Local measurement of flow boiling heat transfer in an array of non-uniformly heated microchannels, International Journal of Heat and Mass Transfer 71: 206–216.
  • Sarafraz MM, Hormozi F, 2014. Scale formation and subcooled flow boiling heat transfer of CuO/water nanofluid inside the vertical annulus, Exp. Therm. Fluid Sci. 52:205-214.
  • Sun B, Yang D, 2014. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube, Int. J. Refrig. 38:206-214.
  • Vafaei S, ve Wen D, 2010. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. Journal of Heat Transfer 132:102404.
  • Vafaei S, ve Wen D, 2011. Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. Journal of Nanoparticle Research 13:1063–1073.
  • Vafaei S, ve Wen D, 2014. Critical heat flux of nanofluids inside a single microchannel: Experiments and correlations. Chemical Engineering Research and Design 92:2339-2351.
  • Wu X, Wu H, Cheng P, 2009. Pressure Drop and Heat Transfer of Al2O3-H2O Nanofluids through Silicon Microchannels, J. Micromech. Microeng. 19(10):105020.
  • Xu L, ve Xu J, 2012. Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannels, International Journal of Heat and Mass Transfer 55:5673-5686.
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Eyüphan Manay

Publication Date July 1, 2017
Submission Date April 15, 2016
Acceptance Date June 20, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Manay, E. (2017). Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri. Journal of the Institute of Science and Technology, 7(1), 237-249.
AMA Manay E. Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri. J. Inst. Sci. and Tech. March 2017;7(1):237-249.
Chicago Manay, Eyüphan. “Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri”. Journal of the Institute of Science and Technology 7, no. 1 (March 2017): 237-49.
EndNote Manay E (March 1, 2017) Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri. Journal of the Institute of Science and Technology 7 1 237–249.
IEEE E. Manay, “Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri”, J. Inst. Sci. and Tech., vol. 7, no. 1, pp. 237–249, 2017.
ISNAD Manay, Eyüphan. “Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri”. Journal of the Institute of Science and Technology 7/1 (March 2017), 237-249.
JAMA Manay E. Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri. J. Inst. Sci. and Tech. 2017;7:237–249.
MLA Manay, Eyüphan. “Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri”. Journal of the Institute of Science and Technology, vol. 7, no. 1, 2017, pp. 237-49.
Vancouver Manay E. Mikrokanallarda Nanoakışkanların Kaynamalı Akış Karakteristikleri. J. Inst. Sci. and Tech. 2017;7(1):237-49.