Research Article
BibTex RIS Cite

The Determination of External Pressure Coeffcients on The Silo Surface According to Different Standards

Year 2017, Volume: 7 Issue: 2, 107 - 114, 30.06.2017

Abstract

In this study, wind external pressure coeffcient (C
p
) values were investigated according to different
height/diameter (h/d
c) and different wind arrival angles (θw) to the silo surface in a steel cylindrical silo with 14
m height and 6 m diameter. Eurocode (EN), Australian standard (AS) and British standard (BS) were used for the
external pressure coeffcients in the study. In the study, coeffcient values were obtained calculating according to
EN and AS standards and compared with the table values given for the BS standard. Depending on the EN and AS
standards, positive C
p
coeffcients were obtained at different h/dc ratios up to a 20° wind arrival angle to the silo
surface. Negative C
p
coeffcients were determined at higher values of the 20° wind arrival angle to the silo surface.
Statistically signifcant differences (P<0.05) were found among the EN, AS and BS standards. As a result, design
must be made considering the C
p
coeffcients which can vary depending on the wind speed and the topographic
conditions of the area in the calculation of the wind load which is one of the important environmental load groups
in the silo design.



References

  • ACI 313-97, 1998. Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials. American Concrete Institute.
  • ACI 334, 1991. Reinforced Concrete Cooling Tower Shells-Practice and Commentary. American Concrete Institute, 334-2R.
  • AS 3774, 1996. Loads on Bulk Containers. Sydney: Australian Standard.
  • AS 1170.2: 1997, 2002. Structural Design Actions Part 2: Wind Actions. Sydney: Australian Standard.
  • ASAE 1995, 2010. ANSI/ASAE EP545, Loads Exerted by Free-Flowing Grain on Shallow Storage Structures. American Society of Agricultural and Biological Engineers, ASABE, St. Joseph, MI 49085-9659, USA.
  • BS 6399-2: 1997, 2002. Loading for Buildings - Part 2: Code of Practice for Wind Loads. British Standard.
  • BS 5502-74: 1991, 2009. Buildings and Structures for Agriculture - Part 74: Code of Practice for Design and Construction of Bins and Silos for Combinable Crops. British Standard.
  • Chen L, Rotter JM, 2012. Buckling of anchored cylindrical shells of uniform thickness under wind load. Engineering Structures, 41: 199-208.
  • EN 1990, 2002. Basis of Structural Design. European Standard.
  • EN 1991-1-4, 2005. Actions on Structures - Part 1-4: general Actions - Part 1-4, Wind Actions. European Standard.
  • EN 1993-1-1, 2005. Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings. European Standard.
  • EN 1991-4, 2006. Actions on Structures - Part 4: Silos and Tanks. European Standard.
  • EN 1993-4-1, 2007. Design of Steel Structures - Part 4-1: Silos. European Standard.
  • Flores FG, Godoy LA, 1998. Buckling of short tanks due to hurricanes. Engineering Structures, 20(8): 752-760.
  • Greiner R, Derler P, 1995. Effect of imperfections on wind-loaded cylindrical shells. Thin-Walled Structures, 23: 271-81.
  • Greiner R, 1998. Cylindrical Shells: Wind Loading. Silos: Fundamentals of Theory, Behaviour, and Design. Taylor & Francis.
  • Kibar H, 2016. Determining the functional characteristics of wheat and corn grains depending on storage time and temperature. Journal of Food Processing and Preservation, 40(4): 749-759.
  • Macdonald PA, Kwok KCS, Holmes JD, 1988. Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures. Journal of Wind Engineering and Industrial Aerodynamics, 31: 165-88.
  • Portela G, Godoy LA, 2005a. Wind pressure sand buckling of cylindrical steel tanks with a conical roof. Journal of Construction Steel Research, 61(6): 786-807.
  • Portela G, Godoy LA, 2005b, Wind pressure sand buckling of cylindrical steel tanks with a dome roof. Journal of Construction Steel Research, 61(6): 808-24.
  • Purdy DM, Maher PE, Frederick D, 1967. Model studies of wind loads on flat-top cylinders. Journal of the Structural Division, ASCE, 93: 379-95.
  • Sabransky IJ, Melbourne WH, 1987. Design pressure distribution on circular silos with conical roofs. Journal of Wind Engineering and Industrial Aerodynamics, 26: 65-84.
  • TÜMAS, 2017. Meteorolojik veri arşiv sistemi. Meteoroloji İşleri Genel Müdürlüğü, http://tumas.dmi.gov.tr/wps/portal/. Erişim tarihi: 10 Nisan, 2017.
  • Zhao Y, Cao OS, Su L, 2013. Buckling design of large circular steel silos subject to wind pressure. Thin-Walled Structures, 73: 337-349.
  • Zhao Y, Lin Y, 2014a. Buckling of cylindrical open-topped steel tanks under wind load. Thin-Walled Structures, 79: 83-94.
  • Zhao Y, Lin Y, Shen YB, 2014b. Wind loads on large cylindrical open-topped tanks in group. Thin-Walled Structures, 78: 108-120.

Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi

Year 2017, Volume: 7 Issue: 2, 107 - 114, 30.06.2017

Abstract

Bu çalışmada 14 m yüksekliğinde ve 6 m çapa sahip çelik silindirik bir siloda farklı yükseklik/çap
(h/d
c) ve silo yüzeyine farklı rüzgar geliş açılarına (θw) göre rüzgar dış basınç katsayı (Cp) değerleri araştırılmıştır.
Araştırmada dış basınç katsayıları için Eurocode (EN), Avustralya standardı (AS) ve İngiliz standardı (BS)
kullanılmıştır. Araştırmada EN ve AS standartlarına göre hesaplamalar yapılarak katsayı değerleri elde edilmiş
olup BS standardı için verilen çizelge değerleri ile karşılaştırmalar yapılmıştır. EN ve AS standartlarına bağlı olarak
farklı h/d
c oranlarında silo yüzeyine 20°’ lik rüzgar geliş açısına kadar pozitif Cp katsayıları elde edilmiştir. Silo
yüzeyine 20°’ lik rüzgar geliş açısından sonraki açı değerlerinde ise negatif C
p
katsayıları belirlenmiştir. İstatistik
analiz sonucunda EN, AS ve BS standartları arasında istatiksel olarak P<0.05 düzeyinde önemli farklılıklar tespit
edilmiştir. Sonuç olarak silo tasarımında önemli bir çevresel yük grubundan olan rüzgar yükünün hesaplanmasında
rüzgar hızı, ve yörenin topoğrafk koşullarına bağlı olarak değişim gösterebilen C
p
katsayılarının dikkate alınarak
tasarım yapılması gerekmektedir



References

  • ACI 313-97, 1998. Standard Practice for Design and Construction of Concrete Silos and Stacking Tubes for Storing Granular Materials. American Concrete Institute.
  • ACI 334, 1991. Reinforced Concrete Cooling Tower Shells-Practice and Commentary. American Concrete Institute, 334-2R.
  • AS 3774, 1996. Loads on Bulk Containers. Sydney: Australian Standard.
  • AS 1170.2: 1997, 2002. Structural Design Actions Part 2: Wind Actions. Sydney: Australian Standard.
  • ASAE 1995, 2010. ANSI/ASAE EP545, Loads Exerted by Free-Flowing Grain on Shallow Storage Structures. American Society of Agricultural and Biological Engineers, ASABE, St. Joseph, MI 49085-9659, USA.
  • BS 6399-2: 1997, 2002. Loading for Buildings - Part 2: Code of Practice for Wind Loads. British Standard.
  • BS 5502-74: 1991, 2009. Buildings and Structures for Agriculture - Part 74: Code of Practice for Design and Construction of Bins and Silos for Combinable Crops. British Standard.
  • Chen L, Rotter JM, 2012. Buckling of anchored cylindrical shells of uniform thickness under wind load. Engineering Structures, 41: 199-208.
  • EN 1990, 2002. Basis of Structural Design. European Standard.
  • EN 1991-1-4, 2005. Actions on Structures - Part 1-4: general Actions - Part 1-4, Wind Actions. European Standard.
  • EN 1993-1-1, 2005. Design of Steel Structures - Part 1-1: General Rules and Rules for Buildings. European Standard.
  • EN 1991-4, 2006. Actions on Structures - Part 4: Silos and Tanks. European Standard.
  • EN 1993-4-1, 2007. Design of Steel Structures - Part 4-1: Silos. European Standard.
  • Flores FG, Godoy LA, 1998. Buckling of short tanks due to hurricanes. Engineering Structures, 20(8): 752-760.
  • Greiner R, Derler P, 1995. Effect of imperfections on wind-loaded cylindrical shells. Thin-Walled Structures, 23: 271-81.
  • Greiner R, 1998. Cylindrical Shells: Wind Loading. Silos: Fundamentals of Theory, Behaviour, and Design. Taylor & Francis.
  • Kibar H, 2016. Determining the functional characteristics of wheat and corn grains depending on storage time and temperature. Journal of Food Processing and Preservation, 40(4): 749-759.
  • Macdonald PA, Kwok KCS, Holmes JD, 1988. Wind loads on circular storage bins, silos and tanks: I. Point pressure measurements on isolated structures. Journal of Wind Engineering and Industrial Aerodynamics, 31: 165-88.
  • Portela G, Godoy LA, 2005a. Wind pressure sand buckling of cylindrical steel tanks with a conical roof. Journal of Construction Steel Research, 61(6): 786-807.
  • Portela G, Godoy LA, 2005b, Wind pressure sand buckling of cylindrical steel tanks with a dome roof. Journal of Construction Steel Research, 61(6): 808-24.
  • Purdy DM, Maher PE, Frederick D, 1967. Model studies of wind loads on flat-top cylinders. Journal of the Structural Division, ASCE, 93: 379-95.
  • Sabransky IJ, Melbourne WH, 1987. Design pressure distribution on circular silos with conical roofs. Journal of Wind Engineering and Industrial Aerodynamics, 26: 65-84.
  • TÜMAS, 2017. Meteorolojik veri arşiv sistemi. Meteoroloji İşleri Genel Müdürlüğü, http://tumas.dmi.gov.tr/wps/portal/. Erişim tarihi: 10 Nisan, 2017.
  • Zhao Y, Cao OS, Su L, 2013. Buckling design of large circular steel silos subject to wind pressure. Thin-Walled Structures, 73: 337-349.
  • Zhao Y, Lin Y, 2014a. Buckling of cylindrical open-topped steel tanks under wind load. Thin-Walled Structures, 79: 83-94.
  • Zhao Y, Lin Y, Shen YB, 2014b. Wind loads on large cylindrical open-topped tanks in group. Thin-Walled Structures, 78: 108-120.
There are 26 citations in total.

Details

Primary Language Turkish
Journal Section Biyosistem Mühendisliği / Biosystem Engineering
Authors

Hakan Kibar

Publication Date June 30, 2017
Submission Date April 25, 2017
Acceptance Date May 19, 2017
Published in Issue Year 2017 Volume: 7 Issue: 2

Cite

APA Kibar, H. (2017). Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi. Journal of the Institute of Science and Technology, 7(2), 107-114.
AMA Kibar H. Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi. J. Inst. Sci. and Tech. June 2017;7(2):107-114.
Chicago Kibar, Hakan. “Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi”. Journal of the Institute of Science and Technology 7, no. 2 (June 2017): 107-14.
EndNote Kibar H (June 1, 2017) Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi. Journal of the Institute of Science and Technology 7 2 107–114.
IEEE H. Kibar, “Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi”, J. Inst. Sci. and Tech., vol. 7, no. 2, pp. 107–114, 2017.
ISNAD Kibar, Hakan. “Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi”. Journal of the Institute of Science and Technology 7/2 (June 2017), 107-114.
JAMA Kibar H. Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi. J. Inst. Sci. and Tech. 2017;7:107–114.
MLA Kibar, Hakan. “Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 7, no. 2, 2017, pp. 107-14.
Vancouver Kibar H. Farklı Standartlara Göre Silo Yüzeyindeki Dış Basınç Katsayılarının Belirlenmesi. J. Inst. Sci. and Tech. 2017;7(2):107-14.