Review
BibTex RIS Cite

Factors Affecting to Allocation in Plants

Year 2017, Volume: 7 Issue: 4, 23 - 32, 31.12.2017

Abstract

Allocation is the sharing of resources (energy, biomass, nutrients, etc.) between organs in order to

fulfill the growth, survival and reproductive functions of organisms. Plants try to be successful by developing an

optimal pattern of resource sharing (allocation) with the influence of highly variable ecological factors and plantrelated

internal factors (genetic, ontogenic, age, lifeform, etc.). For this reason, plants have formed very different

allocation patterns that allow them to survive in evolutionary processes.

References

  • Asaeda T, Manatunge J, Roberts J, Hai DN, 2006. Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome segments of Phragmites australis. Environmental and Experimental Botany, 57: 9-18.
  • Bazzaz FA, 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics, 10: 351-71.
  • Bazzaz FA, Reekie EG, 2005. Reproductive allocation in plants. Elsevier Academic Press, California. 247 p.
  • Bennett, E, Roberts, JA, Wagstaff, C, 2012. Manipulating resource allocation in plants. Journal of Experimental Botany, 63: 3391–3400.
  • Bingham RA, Orthner AR, 1998. Efficient pollination of alpine plants. Nature, 391: 238-239.
  • Carlsson BA, Callaghan TV, 1991. Simulation of fluctuating populations of Carex bigelowii tillers classified by type, age and size. Oikos, 60: 231–240.
  • Cheng DL, Wang GX, Li T, Tang QL, Gong CM, 2007. Relationships among the stem, aboveground and total biomass across Chinese Forests. Journal of Interactive Plant Biology, 49: 1573-1579.
  • de Jong TM, 1986. Fruit effects on fhotosyntesis in Prunus persica. Physiologia Plantarum, 66: 149-153.
  • Eckhart VM, 1992. Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hydrophyllaceae). Evolution, 46: 1313-1328.
  • Fabbro T, Körner C, 2004. Altitudinal differences in flower traits and reproductive allocation. Flora, 199: 70-81. Falinska K, 1985. 1985. The demography of coenopopulations of forest herbs. In: White J, (ed.) The population structure of vegetation. Handbook of vegetation science, Vol. III. Dordrecht/Boston/Lancaster: Dr W. Junk Publishers. 241–264 pp.
  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA, 1980. Age states of plants of various growth forms: a review. Journal of Ecology, 68: 675-696.
  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, 2007. Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22: 255-260.
  • Gignoux J, Konaté S, Lahoreau G, Le Roux X, Simioni G, 2016. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment. Scientific Reports, 6:38838 | DOI: 10.1038/srep38838.
  • Gleeson SK, Tilman D, 1990. Allocation and the transient dynamics and succession on poor soils. Ecology, 71:1144-1155.
  • Gonçalves JFC, Vieira G, Marenco RA, Ferraz JPS, Junior UMS, Barros FCF, 2005. Nutritional status and specific leaf area of mahogany and tonka bean under two light environments. Acta Amazonica, 35: 23-27.
  • Greenwood MS, 1995. Juvenility and maturation in conifers: current concepts. Tree Physiology, 15: 433–438.
  • Hermans C, Hammond JP, White PJ, Verbruggen N, 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11 (12), 610-617.
  • Hiura T, Koyama H, Igarashi T, 1996. Negative trend between seed size and adult leaf size throught the geographical range of Fagus crenata. Ecosciense 3: 226-228.
  • Hunt R, 1990. Basic growth analysis. Unwin Hyman, London. 112 p.
  • Kaneko Y, Homma K, 2006. Differences in the allocation patterns between liana and shrub Hydrangea species. Plant Species Biology, 21: 147-153.
  • Kılınç M, Yüksel Ş, 1995. A morphological, anatomical and ecological study on Pancratium maritimum L. (Amaryllidaceae). Tr. J. Bot., 19: 309-320.
  • Kılınç M, Kutbay H G, 2008. Bitki Ekolojisi. Palme Yay., Ankara. 362 s.
  • Korkmaz H, Alkan S, Mumcu Ü, 2012. Spatio-temporal variations in allocation of macronutrients in Smilax excelsa L. (Liliaceae). Revue D'écologie (Terre & Vie), 67 (2): 149-156.
  • Kutbay HG, Kılınç M, 1995. An autoecological study on Galanthus rizehensis Stern (Amaryllidaceae). Tr. J. Bot., 19: 235-240.
  • Korkmaz H, Yıldız M, Kutbay HG, Yalçın E, Bilgin A, 2006. Macroelement changes of Trachystemon orientalis (L.) G. Don (Boraginaceae) under different forest communities. Ekológia (Bratislava), 25: 113-125.
  • Körner C, 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin. 345 p.
  • Ludewig F, Flügge U-I, 2013. Role of metabolite transporters in source–sink carbon allocation. Frontiers in Plant Science, 4: 1-16.
  • Lylod DG, Bawa KS, 1984. Modification of gender of seed plants in varying conditions. Evolutionary Biology, 17: 255-338.
  • Mehrotra P, Mehrotra P, Rawat YS, 1998. Canopy effect on the dry matter allocation in different components of evergreen and non-evergreen forb species of Kumaun Himalaya. Current Science of Bangalore, 75: 1399-1402.
  • Miyazaki Y, Hiura T, Kato E, Funada R, 2002. Allocation of resources to reproduction in Styrax obassia in a masting year. Annals of Botany, 89: 767-772.
  • Niinemets Ü, 2004. Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytologist, 162: 683–696.
  • Niinemets Ü, 2005. Key plant structural and allocation traits depend on relative age in the perennial herb Pimpinella saxifraga. Annals of Botany, 96: 323-330.
  • Pirdal M, 1989. Studies on the autoecology of Asphodelus aestivus Brot. Doga TU Botanik D., 13: 89-101.
  • Poorter, H, Nagel, O, 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27: 595–607.
  • Poorter, H, Niklas KJ, Reich, PB, Oleksyn, J, Poot, P, Mommer, L, 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193: 30–50.
  • Ramula S, Mutikainen P, 2003. Sex allocation of females and hermaphrodites in the gynodioecious Geranium sylvaticum. Annals of Botany, 92: 207-213.
  • Reekie EG., Bazzaz, FA. 1987. Reproductive effort in plants. 1. Carbon allocation to reproduction. American Naturalist, 129: 876-896. Silvertown JW, Dodd M, 1996. Comparing plants and connecting traits. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 351: 1233-1239.
  • Schultz JC., Appel HM, Ferrieri AP., Arnold TM, 2013. Flexible resource allocation during plant defense responses. Frontiers in Plant Science, 4: 1-11.
  • Szabó Gy., Czellér K, 2012. Similarities in the Allocation of Metallic Elements in Dietary Plants. Geografijos metraštis, 45: 98-107.
  • Tateno R, Hishi T, Takeda H, 2004. Above- and belowground biomass and net primer production in cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecology and Management, 193: 297-306.
  • Wang C, Zhou J, Liu J, Wang L, Xiao H, 2017. Reproductive Allocation Strategy of Two Herbaceous Invasive Plants Across Different Cover Classes. Polish Journal of Environmental Studies, 26: 355-364.
  • Tilman, D., 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton. 376 p.
  • Weiner J., 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6: 207-215.
  • Williams CF, Fenster CB, 1998. Ecological and genetic factors contributing to the low frequency of male sterility in Chamaecrista fasciculata (Fabaceae). American Journal of Botany 85: 1243-1250.
  • Zhukova LA, 1987. Dinamika tsenopopulyatsii lugovyh rastenii [Coenopopulation dynamics of meadow plants]. Moskovskii Gosudarstvennyi Pedagogicheskii Institut Imeni V. I. Lenina. Doctor of Biology Dissertation.

Bitkilerde Allokasyonu Etkileyen Faktörler

Year 2017, Volume: 7 Issue: 4, 23 - 32, 31.12.2017

Abstract

Allokasyon organizmaların büyüme, hayatta kalma ve üreme fonksiyonlarını yerine getirmek üzere,
kaynakları (enerji, biyomas, besin elementleri, vs.) organları arasında paylaştırmasıdır. Bitkiler oldukça
değişkenlik gösteren ekolojik faktörler ve bitkiye bağlı içsel faktörlerin (genetik, ontogenik, yaş, yaşam formu,
vs.) etkisiyle, optimal bir kaynak paylaşım (allokasyon) modeli geliştirerek başarılı olmaya çalışırlar. Bu nedenle
bitkiler evolusyonel süreçler içinde, hayatta kalmalarını sağlayan birbirinden oldukça farklı allokasyon modelleri
oluşturmuşlardır.

References

  • Asaeda T, Manatunge J, Roberts J, Hai DN, 2006. Seasonal dynamics of resource translocation between the aboveground organs and age-specific rhizome segments of Phragmites australis. Environmental and Experimental Botany, 57: 9-18.
  • Bazzaz FA, 1979. The physiological ecology of plant succession. Annual Review of Ecology and Systematics, 10: 351-71.
  • Bazzaz FA, Reekie EG, 2005. Reproductive allocation in plants. Elsevier Academic Press, California. 247 p.
  • Bennett, E, Roberts, JA, Wagstaff, C, 2012. Manipulating resource allocation in plants. Journal of Experimental Botany, 63: 3391–3400.
  • Bingham RA, Orthner AR, 1998. Efficient pollination of alpine plants. Nature, 391: 238-239.
  • Carlsson BA, Callaghan TV, 1991. Simulation of fluctuating populations of Carex bigelowii tillers classified by type, age and size. Oikos, 60: 231–240.
  • Cheng DL, Wang GX, Li T, Tang QL, Gong CM, 2007. Relationships among the stem, aboveground and total biomass across Chinese Forests. Journal of Interactive Plant Biology, 49: 1573-1579.
  • de Jong TM, 1986. Fruit effects on fhotosyntesis in Prunus persica. Physiologia Plantarum, 66: 149-153.
  • Eckhart VM, 1992. Resource compensation and the evolution of gynodioecy in Phacelia linearis (Hydrophyllaceae). Evolution, 46: 1313-1328.
  • Fabbro T, Körner C, 2004. Altitudinal differences in flower traits and reproductive allocation. Flora, 199: 70-81. Falinska K, 1985. 1985. The demography of coenopopulations of forest herbs. In: White J, (ed.) The population structure of vegetation. Handbook of vegetation science, Vol. III. Dordrecht/Boston/Lancaster: Dr W. Junk Publishers. 241–264 pp.
  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA, 1980. Age states of plants of various growth forms: a review. Journal of Ecology, 68: 675-696.
  • Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, 2007. Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22: 255-260.
  • Gignoux J, Konaté S, Lahoreau G, Le Roux X, Simioni G, 2016. Allocation strategies of savanna and forest tree seedlings in response to fire and shading: outcomes of a field experiment. Scientific Reports, 6:38838 | DOI: 10.1038/srep38838.
  • Gleeson SK, Tilman D, 1990. Allocation and the transient dynamics and succession on poor soils. Ecology, 71:1144-1155.
  • Gonçalves JFC, Vieira G, Marenco RA, Ferraz JPS, Junior UMS, Barros FCF, 2005. Nutritional status and specific leaf area of mahogany and tonka bean under two light environments. Acta Amazonica, 35: 23-27.
  • Greenwood MS, 1995. Juvenility and maturation in conifers: current concepts. Tree Physiology, 15: 433–438.
  • Hermans C, Hammond JP, White PJ, Verbruggen N, 2006. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11 (12), 610-617.
  • Hiura T, Koyama H, Igarashi T, 1996. Negative trend between seed size and adult leaf size throught the geographical range of Fagus crenata. Ecosciense 3: 226-228.
  • Hunt R, 1990. Basic growth analysis. Unwin Hyman, London. 112 p.
  • Kaneko Y, Homma K, 2006. Differences in the allocation patterns between liana and shrub Hydrangea species. Plant Species Biology, 21: 147-153.
  • Kılınç M, Yüksel Ş, 1995. A morphological, anatomical and ecological study on Pancratium maritimum L. (Amaryllidaceae). Tr. J. Bot., 19: 309-320.
  • Kılınç M, Kutbay H G, 2008. Bitki Ekolojisi. Palme Yay., Ankara. 362 s.
  • Korkmaz H, Alkan S, Mumcu Ü, 2012. Spatio-temporal variations in allocation of macronutrients in Smilax excelsa L. (Liliaceae). Revue D'écologie (Terre & Vie), 67 (2): 149-156.
  • Kutbay HG, Kılınç M, 1995. An autoecological study on Galanthus rizehensis Stern (Amaryllidaceae). Tr. J. Bot., 19: 235-240.
  • Korkmaz H, Yıldız M, Kutbay HG, Yalçın E, Bilgin A, 2006. Macroelement changes of Trachystemon orientalis (L.) G. Don (Boraginaceae) under different forest communities. Ekológia (Bratislava), 25: 113-125.
  • Körner C, 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin. 345 p.
  • Ludewig F, Flügge U-I, 2013. Role of metabolite transporters in source–sink carbon allocation. Frontiers in Plant Science, 4: 1-16.
  • Lylod DG, Bawa KS, 1984. Modification of gender of seed plants in varying conditions. Evolutionary Biology, 17: 255-338.
  • Mehrotra P, Mehrotra P, Rawat YS, 1998. Canopy effect on the dry matter allocation in different components of evergreen and non-evergreen forb species of Kumaun Himalaya. Current Science of Bangalore, 75: 1399-1402.
  • Miyazaki Y, Hiura T, Kato E, Funada R, 2002. Allocation of resources to reproduction in Styrax obassia in a masting year. Annals of Botany, 89: 767-772.
  • Niinemets Ü, 2004. Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytologist, 162: 683–696.
  • Niinemets Ü, 2005. Key plant structural and allocation traits depend on relative age in the perennial herb Pimpinella saxifraga. Annals of Botany, 96: 323-330.
  • Pirdal M, 1989. Studies on the autoecology of Asphodelus aestivus Brot. Doga TU Botanik D., 13: 89-101.
  • Poorter, H, Nagel, O, 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27: 595–607.
  • Poorter, H, Niklas KJ, Reich, PB, Oleksyn, J, Poot, P, Mommer, L, 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193: 30–50.
  • Ramula S, Mutikainen P, 2003. Sex allocation of females and hermaphrodites in the gynodioecious Geranium sylvaticum. Annals of Botany, 92: 207-213.
  • Reekie EG., Bazzaz, FA. 1987. Reproductive effort in plants. 1. Carbon allocation to reproduction. American Naturalist, 129: 876-896. Silvertown JW, Dodd M, 1996. Comparing plants and connecting traits. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 351: 1233-1239.
  • Schultz JC., Appel HM, Ferrieri AP., Arnold TM, 2013. Flexible resource allocation during plant defense responses. Frontiers in Plant Science, 4: 1-11.
  • Szabó Gy., Czellér K, 2012. Similarities in the Allocation of Metallic Elements in Dietary Plants. Geografijos metraštis, 45: 98-107.
  • Tateno R, Hishi T, Takeda H, 2004. Above- and belowground biomass and net primer production in cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecology and Management, 193: 297-306.
  • Wang C, Zhou J, Liu J, Wang L, Xiao H, 2017. Reproductive Allocation Strategy of Two Herbaceous Invasive Plants Across Different Cover Classes. Polish Journal of Environmental Studies, 26: 355-364.
  • Tilman, D., 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton. 376 p.
  • Weiner J., 2004. Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6: 207-215.
  • Williams CF, Fenster CB, 1998. Ecological and genetic factors contributing to the low frequency of male sterility in Chamaecrista fasciculata (Fabaceae). American Journal of Botany 85: 1243-1250.
  • Zhukova LA, 1987. Dinamika tsenopopulyatsii lugovyh rastenii [Coenopopulation dynamics of meadow plants]. Moskovskii Gosudarstvennyi Pedagogicheskii Institut Imeni V. I. Lenina. Doctor of Biology Dissertation.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Biyoloji / Biology
Authors

Hasan Korkmaz

Safinaz Alkan This is me

Publication Date December 31, 2017
Submission Date April 13, 2017
Published in Issue Year 2017 Volume: 7 Issue: 4

Cite

APA Korkmaz, H., & Alkan, S. (2017). Bitkilerde Allokasyonu Etkileyen Faktörler. Journal of the Institute of Science and Technology, 7(4), 23-32.
AMA Korkmaz H, Alkan S. Bitkilerde Allokasyonu Etkileyen Faktörler. J. Inst. Sci. and Tech. December 2017;7(4):23-32.
Chicago Korkmaz, Hasan, and Safinaz Alkan. “Bitkilerde Allokasyonu Etkileyen Faktörler”. Journal of the Institute of Science and Technology 7, no. 4 (December 2017): 23-32.
EndNote Korkmaz H, Alkan S (December 1, 2017) Bitkilerde Allokasyonu Etkileyen Faktörler. Journal of the Institute of Science and Technology 7 4 23–32.
IEEE H. Korkmaz and S. Alkan, “Bitkilerde Allokasyonu Etkileyen Faktörler”, J. Inst. Sci. and Tech., vol. 7, no. 4, pp. 23–32, 2017.
ISNAD Korkmaz, Hasan - Alkan, Safinaz. “Bitkilerde Allokasyonu Etkileyen Faktörler”. Journal of the Institute of Science and Technology 7/4 (December 2017), 23-32.
JAMA Korkmaz H, Alkan S. Bitkilerde Allokasyonu Etkileyen Faktörler. J. Inst. Sci. and Tech. 2017;7:23–32.
MLA Korkmaz, Hasan and Safinaz Alkan. “Bitkilerde Allokasyonu Etkileyen Faktörler”. Journal of the Institute of Science and Technology, vol. 7, no. 4, 2017, pp. 23-32.
Vancouver Korkmaz H, Alkan S. Bitkilerde Allokasyonu Etkileyen Faktörler. J. Inst. Sci. and Tech. 2017;7(4):23-32.