Research Article
BibTex RIS Cite

Comparison of Mohr-Coulomb and Hardening Soil Models’ Numerical Estimation of Ground Surface Settlement Caused by Tunneling

Year 2017, Volume: 7 Issue: 4, 95 - 102, 31.12.2017

Abstract

Due to in depth tunnel excavation, tensions in the soil are eased, causing elastic and plastic

deformations in the area of tunnel and leading to surface settlement at the ground level. Currently, along with

the use of numerical methods in analysis and design of engineering projects, it is known that this method has

used extensively in the analysis of problems related to geotechnical engineering and tunneling. Selection of the

appropriate parameters and soil model can have a significant impact on the results of numerical analysis. The

Mohr-Coulomb elastic-plastic model (MC) is one of the most widely used models, used in cases evaluating the

hardness of materials, independent of the surface tension. If the Mohr-Coulomb used for numerical modeling

of tunnel where in-depth tunneling excavation is involved and where an increase in maximum ground surface

settlement and decrease in the reliability of stability of tunnels can be seen, which may not be appropriate in some

conditions. The more appropriate model should be used to solve this problem, one that can model the hardness of

materials based on changes in the level of stress. In this study, the maximum ground surface settlement due to tunnel

excavation, obtained from Mohr- Coulomb model was compared with those of Hardening Soil (HS) Model results.

Therefore, the ground surface settlement because of an assumption tunnel in different depths was analyzed with

Mohr-Coulomb and Hardening Soil models by using PLAXIS 2D. As a result of the analyzes, it is observed that as

the depth of the tunnel increases, the settlements on the ground surface decrease according to Mohr-Coulomb and

approach the real values.

References

  • Attewell PB, Farmer IW, 1974. Ground disturbance caused by shield tunnelling in a stiff. Canadian Geotechnical Journal, 11: 380–395.
  • Attewell PB, Woodman JP, 1982. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering, 15:13–22.
  • Boháč J, Herle I, Mašín D, 2002. Stress and strain dependent stiffness in a numerical model of a tunnel. Proc 2nd International Conference on Soil Structure Interaction in Urban Civil Engineering, 7-8 March 2002, Zurich. Boscardin MD, Cording EJ, 1989. Building response t o excavation-induced settlement. Journal of Geotechnical Enginering, 115:1–21.
  • Brinkgreve RBJ, Al-Khoury R, 2016. PLAXIS version 2016 reference manual.
  • Chakeri H, Ozcelik Y, Unver B, 2013. Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunnelling and Underground Space Technology, 36: 14–23.
  • Chou WI, Bobet A, 2002. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology, 17: 3–19.
  • Corp IC, 2002. Fast Lagrangian Analysis of Continua, Flac 2D Manual, Minneapolis, 3058 p.
  • Das BM, Sobhan K, 2014. Principles of Geotechnical Engineering. 8th Edition, Cengage Learning, Stamford, USA, 746 p.
  • Fasihnikoutalab MH, Huat BBK, Asadi A, Daneshmand S, 2012. Numerical stability analysis of tunnel by PLAXIS. Electronic Journal of Geotechnical Engineering, 17: 451–461. Franzius JNN, 2002. Behavior of building due to tunnel induced settlement. University of London, Imperial College of Science Technology and Medicine, PhD thesis, 360p.
  • Guglielmetti V, Grasso P, Mahtab A, Xu S, 2008. Mechanized tunnelling in urban areas : design methodology and construction control, Taylor & Francis, Turin, Italy, 504p.
  • Leca E, New B, Reporter G, 2007. Settlements induced by tunneling in Soft Ground. Tunnelling and Underground Space Technology, 22:119–149.
  • Ma L, Ding L, Luo H, 2014. Non-linear description of ground settlement over twin tunnels in soil. Tunnelling and Underground Space Technology, 42:144–151.
  • Melis M, Medina L, Rodríguez, JM, 2002. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Journal, 39:1273–1287.
  • O’Reilly MP, New BM, 1982. Settlement above tunnels in the United Kingdom-their magnitude and prediction. In Proceedings of the 3th tunnelling conference, London.
  • Obrzud R, 2010. On the use of the Hardening Soil Small Strain model in geotechnical practice. Numerics in Geotechnics and Structures, 16p.
  • Papastamos G, Stiros S, Saltogianni V, Kontogianni V, 2015. 3-D strong tilting observed in tall, isolated brick chimneys during the excavation of the Athens Metro. Applied Geomatics, 7: 115–121.
  • Peck RB, 1969. Deep excavations and tunneling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City.
  • Salimi AR, Esmaeili M, Salehi B, 2013. Analysis of a TBM Tunneling Effect on Surface Subsidence : A Case Study from Tehran-Iran, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 7: 1131–1135.
  • Schanz T, Vermeer A, Bonnier P, 1999. The hardening soil model: formulation and verification. Beyond 2000 Computional Geotechnics-10 years PLAXIS, Amsterdam, Netherlands, 281p.
  • Schweiger HF, 2008. The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanik und Tunnelbau, 1: 336–344.

Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması

Year 2017, Volume: 7 Issue: 4, 95 - 102, 31.12.2017

Abstract

Zemin içinde yapılan tünel kazısı nedeniyle, zemindeki gerilmeler boşalarak kazı alanında elastik ve plastik
deformasyonlara yol açmakta ve zemin yüzeyinde oturmalar meydana gelmektedir. Günümüzde, mühendislik
projelerinin tasarım ve analizinde sayısal yöntemlerin kullanımı ile birlikte, Geoteknik mühendisliği ve tünel ile ilgili
problemlerin çözümünde bu yöntemin yaygın bir şekilde kullanıldığına tanıklık etmekteyiz. Uygun parametrelerin
ve zemin modelinin seçilmesi, nümerik analiz sonuçlarını üzerinde önemli etkiye sahiptir. Mohr-Coulomb (MC)
elasto-plastik model malzemelerin sertliğinin yüzey gerilmelerden bağımsız olarak tanımlandığı durumlarda
kullanılan en yaygın zemin davranış modellerinden biridir. Tünel modellemelerinde Mohr-Coulomb kullanılması
halinde, kazı derinliği arttıkça zemin yüzeyindeki oturmaların gerçek değerlerden fazla çıktığı ve güvenilirliğin
azaldığı görülmektedir. Bu problemin çözümü için, gerilme düzeyindeki değişikliklere bağlı olarak malzemelerin
sertliğini modelleyebilen daha uygun bir davranış modeli kullanılmalıdır. Bu çalışmada, tünel kazısından dolayı
Mohr-Coulomb modelinden elde edilen maksimum zemin yüzey oturmaları Pekleşen Zemin modeli (HS) ile
karşılaştırılmıştır. Bu nedenle, varsayılan farklı derinliklerdeki bir tünelden dolayı zemin yüzeyinde oluşacak
oturmalar PLAXIS kullanılarak Mohr-Coulomb ve Pekleşen Zemin malzeme modelleriyle analiz edilmiştir.
Yapılan analizler sonucunda, Pekleşen Zemin modelinde tünelin derinliği arttıkça zemin yüzeyindeki oturmaların
Mohr-Coulomb’a göre azaldığı ve gerçek değerlere daha yaklaştığı görülmektedir.

References

  • Attewell PB, Farmer IW, 1974. Ground disturbance caused by shield tunnelling in a stiff. Canadian Geotechnical Journal, 11: 380–395.
  • Attewell PB, Woodman JP, 1982. Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil. Ground Engineering, 15:13–22.
  • Boháč J, Herle I, Mašín D, 2002. Stress and strain dependent stiffness in a numerical model of a tunnel. Proc 2nd International Conference on Soil Structure Interaction in Urban Civil Engineering, 7-8 March 2002, Zurich. Boscardin MD, Cording EJ, 1989. Building response t o excavation-induced settlement. Journal of Geotechnical Enginering, 115:1–21.
  • Brinkgreve RBJ, Al-Khoury R, 2016. PLAXIS version 2016 reference manual.
  • Chakeri H, Ozcelik Y, Unver B, 2013. Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunnelling and Underground Space Technology, 36: 14–23.
  • Chou WI, Bobet A, 2002. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology, 17: 3–19.
  • Corp IC, 2002. Fast Lagrangian Analysis of Continua, Flac 2D Manual, Minneapolis, 3058 p.
  • Das BM, Sobhan K, 2014. Principles of Geotechnical Engineering. 8th Edition, Cengage Learning, Stamford, USA, 746 p.
  • Fasihnikoutalab MH, Huat BBK, Asadi A, Daneshmand S, 2012. Numerical stability analysis of tunnel by PLAXIS. Electronic Journal of Geotechnical Engineering, 17: 451–461. Franzius JNN, 2002. Behavior of building due to tunnel induced settlement. University of London, Imperial College of Science Technology and Medicine, PhD thesis, 360p.
  • Guglielmetti V, Grasso P, Mahtab A, Xu S, 2008. Mechanized tunnelling in urban areas : design methodology and construction control, Taylor & Francis, Turin, Italy, 504p.
  • Leca E, New B, Reporter G, 2007. Settlements induced by tunneling in Soft Ground. Tunnelling and Underground Space Technology, 22:119–149.
  • Ma L, Ding L, Luo H, 2014. Non-linear description of ground settlement over twin tunnels in soil. Tunnelling and Underground Space Technology, 42:144–151.
  • Melis M, Medina L, Rodríguez, JM, 2002. Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Canadian Geotechnical Journal, 39:1273–1287.
  • O’Reilly MP, New BM, 1982. Settlement above tunnels in the United Kingdom-their magnitude and prediction. In Proceedings of the 3th tunnelling conference, London.
  • Obrzud R, 2010. On the use of the Hardening Soil Small Strain model in geotechnical practice. Numerics in Geotechnics and Structures, 16p.
  • Papastamos G, Stiros S, Saltogianni V, Kontogianni V, 2015. 3-D strong tilting observed in tall, isolated brick chimneys during the excavation of the Athens Metro. Applied Geomatics, 7: 115–121.
  • Peck RB, 1969. Deep excavations and tunneling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City.
  • Salimi AR, Esmaeili M, Salehi B, 2013. Analysis of a TBM Tunneling Effect on Surface Subsidence : A Case Study from Tehran-Iran, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 7: 1131–1135.
  • Schanz T, Vermeer A, Bonnier P, 1999. The hardening soil model: formulation and verification. Beyond 2000 Computional Geotechnics-10 years PLAXIS, Amsterdam, Netherlands, 281p.
  • Schweiger HF, 2008. The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanik und Tunnelbau, 1: 336–344.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Semet Çelik

Publication Date December 31, 2017
Submission Date July 21, 2017
Published in Issue Year 2017 Volume: 7 Issue: 4

Cite

APA Çelik, S. (2017). Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması. Journal of the Institute of Science and Technology, 7(4), 95-102.
AMA Çelik S. Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması. J. Inst. Sci. and Tech. December 2017;7(4):95-102.
Chicago Çelik, Semet. “Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb Ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması”. Journal of the Institute of Science and Technology 7, no. 4 (December 2017): 95-102.
EndNote Çelik S (December 1, 2017) Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması. Journal of the Institute of Science and Technology 7 4 95–102.
IEEE S. Çelik, “Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması”, J. Inst. Sci. and Tech., vol. 7, no. 4, pp. 95–102, 2017.
ISNAD Çelik, Semet. “Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb Ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması”. Journal of the Institute of Science and Technology 7/4 (December 2017), 95-102.
JAMA Çelik S. Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması. J. Inst. Sci. and Tech. 2017;7:95–102.
MLA Çelik, Semet. “Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb Ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması”. Journal of the Institute of Science and Technology, vol. 7, no. 4, 2017, pp. 95-102.
Vancouver Çelik S. Tünel Kazısından Dolayı Zemin Yüzeyindeki Oturmaların Mohr- Coulomb ve Pekleşen Zemin Modelleriyle Nümerik Tahminlerinin Karşılaştırılması. J. Inst. Sci. and Tech. 2017;7(4):95-102.