Research Article
BibTex RIS Cite

Thermal Degradation Kinetics of Poly(3-Benzoyl Coumarin-7-yl- Methacrylate) Homopolymer Containing Coumarin Side Group

Year 2017, Volume: 7 Issue: 4, 113 - 121, 31.12.2017

Abstract

In present study, thermal degradation kinetics of a new methacrylate polymer containing

coumarin side group, poly(3-benzoyl coumarin-7-yl-methacrylate), was investigated in detail. For this purpose,

thermogravimetric analysis (TGA) was performed by applying a controlled heating program at different heating

rates to specific amounts of polymer samples. When the TGA results were examined, it was concluded that the

thermal stability of polymer was higher with increasing the heating rate. Decomposition activation energies of

polymer were calculated as 155.01 kJ mol-1 and 165.29 kJ mol-1 according to Flynn-Wall-Ozawa and Kissinger

methods, respectively. Coats-Redfern method was also used to investigate the thermal decomposition mechanism

of polymer. In the light of obtained kinetic data, it was determined that the thermal decomposition mechanism of

coumarin derived polymer was followed by D1 one dimensional diffusion type deceleration mechanism at 10 °C

min-1 optimum heating rate.

References

  • Aboulkas A, El Harfi K, 2008. Study of the kinetics and mechanisms of thermal decomposition of moroccan tarfaya oil shale and its kerogen. Oil Shale, 25: 426–443.
  • Ajani OO, Nwinyi OC, 2010. Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic)acryloyl}-2H-chromen-2-one derivatives. Journal of Heterocyclic Chemistry, 47: 179-187.
  • Ayhan AF, 2017. Kumarin Türevli Kopolimer Sistemlerinin Geliştirilmesi, Adıyaman Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, 24s.
  • Chaudhary R, Datta M, 2014. Synthesis of coumarin derivatives: A green process. European Chemical Bulletin, 3: 63-69.
  • Chen Y, Wang Q, 2007. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability, 92: 280–291.
  • Coats AW, Redfern JP, 1964. Kinetic parameters from thermogravimetric data. Nature, 201: 68-69.
  • Essaidi Z, Krupka O, Iliopoulos K, Champigny E, Sahraoui B, Sallé M, Gindre D, 2013. Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities. Optical Materials, 35: 576–581.
  • Flynn JH, Wall LA, 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4: 323–328.
  • Fomine S, Rivera E, Fomina E, Ortiz A, Ogawa T, 1998. Polymers from coumarines: 4. Design and synthesis of novel hyperbranched and comblike coumarin-containing polymers, Polymer, 39: 3551-3558.
  • Fraga F, Nunez ER, 2001. Activation energies for the epoxy system BADGE n=0/m-XDA obtained using data from thermogravimetric analysis. Journal of Applied Polymer Science, 80: 776–782.
  • Gindre D, Iliopoulos K, Krupka O, Evrard M, Champigny E, Sallé M, 2016. Coumarin-Containing polymers for high density non-linear optical data storage. Molecules, 21: 147.
  • Kissinger HE, 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702-1706.
  • Kurt A, Koca M, 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay Nanocomposites. Journal of Engineering Research, 4: 46-65.
  • Meng XL, Huang YD, Yu H, Lv ZS, 2007. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units, Polymer Degradation and Stability, 92: 962-967.
  • Nofal ZM, El-Zahar M, Abd El-Karim S, 2000. Novel coumarin derivatives with expected biological activity. Molecules, 5: 99-113.
  • Nunez L, Fraga F, Nunez MR, Villanueva M, 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer, 41: 4635-4641.
  • Ozawa T, 1986. Applicability of Friedman plot. Journal of Thermal Analysis, 31: 547-551.
  • Patel HJ, Patel MG, Patel RJ, Patel KH, Patel RM, 2008. Synthesis, characterization, thermal studies, and antimicrobial screening of poly (acrylate)s bearing 4-methyl coumarin side groups. Iranian Polymer Journal, 17: 635-644.
  • Skowronski L, Krupka O, Smokal V, Grabowski A, Naparty M, Derkowska-Zielinska B, 2015. Optical properties of coumarins containing copolymers. Optical Materials, 47: 18–23.
  • Tasior M, Kim D, Singha S, Krzeszewski M, Ahn KH, Gryko DT, 2015. π-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C, 3: 1421-1446.
  • Tian Y, Akiyama E, Nagase Y, Kanazawa A, Tsutsumi O, Ikeda T, 2000. Liquid crystalline coumarin polymers, Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties. Macromolecular Chemistry and Physics, 201: 1640–1652.
  • Venkatesan S, Ranjithkumar B, Rajeshkumar S, Basha KA, 2014. Synthesis, characterization, thermal stability and antibacterial activity of coumarin based methacrylate copolymers. Chinese Journal of Polymer Science, 32: 1373−1380.

Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği

Year 2017, Volume: 7 Issue: 4, 113 - 121, 31.12.2017

Abstract

Yan grup olarak kumarin halkasını barındıran ve yeni bir metakrilat polimeri olan poli(3-benzoil kumarin-
7-il-metakrilat) polimerinin termal bozunma kinetiği mevcut çalışmada detaylıca araştırıldı. Bu amaçla, belirli
miktardaki polimer örneklerine farklı ısıtma hızlarında kontrollü bir ısıtma programı uygulanarak termogravimetrik
analizi (TGA) yapıldı. TGA sonuçları incelendiğinde, ısıtma hızı artışı ile polimerin termal kararlılığının daha
yüksek olduğu sonucuna varıldı. Polimerin termal bozunma aktivasyon enerjisi Flynn-Wall-Ozawa metoduna göre
155.01 kJ mol-1 ve Kissinger metoduna göre ise 165.29 kJ mol-1 olarak hesaplandı. Polimerin termal bozunma
mekanizmasını belirlemek amacıyla Coats-Redfern kinetik metodu kullanıldı. Elde edilen kinetik veriler ışığında
polimerin termal bozunma mekanizmasının optimum 10 °C dak-1 ısıtma hızında D1 tek boyutlu difüzyon tipi
yavaşlama mekanizması üzerinden ilerlediği belirlendi.

References

  • Aboulkas A, El Harfi K, 2008. Study of the kinetics and mechanisms of thermal decomposition of moroccan tarfaya oil shale and its kerogen. Oil Shale, 25: 426–443.
  • Ajani OO, Nwinyi OC, 2010. Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic)acryloyl}-2H-chromen-2-one derivatives. Journal of Heterocyclic Chemistry, 47: 179-187.
  • Ayhan AF, 2017. Kumarin Türevli Kopolimer Sistemlerinin Geliştirilmesi, Adıyaman Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, 24s.
  • Chaudhary R, Datta M, 2014. Synthesis of coumarin derivatives: A green process. European Chemical Bulletin, 3: 63-69.
  • Chen Y, Wang Q, 2007. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polymer Degradation and Stability, 92: 280–291.
  • Coats AW, Redfern JP, 1964. Kinetic parameters from thermogravimetric data. Nature, 201: 68-69.
  • Essaidi Z, Krupka O, Iliopoulos K, Champigny E, Sahraoui B, Sallé M, Gindre D, 2013. Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities. Optical Materials, 35: 576–581.
  • Flynn JH, Wall LA, 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4: 323–328.
  • Fomine S, Rivera E, Fomina E, Ortiz A, Ogawa T, 1998. Polymers from coumarines: 4. Design and synthesis of novel hyperbranched and comblike coumarin-containing polymers, Polymer, 39: 3551-3558.
  • Fraga F, Nunez ER, 2001. Activation energies for the epoxy system BADGE n=0/m-XDA obtained using data from thermogravimetric analysis. Journal of Applied Polymer Science, 80: 776–782.
  • Gindre D, Iliopoulos K, Krupka O, Evrard M, Champigny E, Sallé M, 2016. Coumarin-Containing polymers for high density non-linear optical data storage. Molecules, 21: 147.
  • Kissinger HE, 1957. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29: 1702-1706.
  • Kurt A, Koca M, 2016. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay Nanocomposites. Journal of Engineering Research, 4: 46-65.
  • Meng XL, Huang YD, Yu H, Lv ZS, 2007. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units, Polymer Degradation and Stability, 92: 962-967.
  • Nofal ZM, El-Zahar M, Abd El-Karim S, 2000. Novel coumarin derivatives with expected biological activity. Molecules, 5: 99-113.
  • Nunez L, Fraga F, Nunez MR, Villanueva M, 2000. Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer, 41: 4635-4641.
  • Ozawa T, 1986. Applicability of Friedman plot. Journal of Thermal Analysis, 31: 547-551.
  • Patel HJ, Patel MG, Patel RJ, Patel KH, Patel RM, 2008. Synthesis, characterization, thermal studies, and antimicrobial screening of poly (acrylate)s bearing 4-methyl coumarin side groups. Iranian Polymer Journal, 17: 635-644.
  • Skowronski L, Krupka O, Smokal V, Grabowski A, Naparty M, Derkowska-Zielinska B, 2015. Optical properties of coumarins containing copolymers. Optical Materials, 47: 18–23.
  • Tasior M, Kim D, Singha S, Krzeszewski M, Ahn KH, Gryko DT, 2015. π-Expanded coumarins: synthesis, optical properties and applications. Journal of Materials Chemistry C, 3: 1421-1446.
  • Tian Y, Akiyama E, Nagase Y, Kanazawa A, Tsutsumi O, Ikeda T, 2000. Liquid crystalline coumarin polymers, Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties. Macromolecular Chemistry and Physics, 201: 1640–1652.
  • Venkatesan S, Ranjithkumar B, Rajeshkumar S, Basha KA, 2014. Synthesis, characterization, thermal stability and antibacterial activity of coumarin based methacrylate copolymers. Chinese Journal of Polymer Science, 32: 1373−1380.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Kimya / Chemistry
Authors

Adnan Kurt

Publication Date December 31, 2017
Submission Date June 13, 2017
Published in Issue Year 2017 Volume: 7 Issue: 4

Cite

APA Kurt, A. (2017). Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği. Journal of the Institute of Science and Technology, 7(4), 113-121.
AMA Kurt A. Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği. J. Inst. Sci. and Tech. December 2017;7(4):113-121.
Chicago Kurt, Adnan. “Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-Il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği”. Journal of the Institute of Science and Technology 7, no. 4 (December 2017): 113-21.
EndNote Kurt A (December 1, 2017) Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği. Journal of the Institute of Science and Technology 7 4 113–121.
IEEE A. Kurt, “Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği”, J. Inst. Sci. and Tech., vol. 7, no. 4, pp. 113–121, 2017.
ISNAD Kurt, Adnan. “Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-Il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği”. Journal of the Institute of Science and Technology 7/4 (December 2017), 113-121.
JAMA Kurt A. Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği. J. Inst. Sci. and Tech. 2017;7:113–121.
MLA Kurt, Adnan. “Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-Il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği”. Journal of the Institute of Science and Technology, vol. 7, no. 4, 2017, pp. 113-21.
Vancouver Kurt A. Kumarin Yan Grup İçeren Poli(3-Benzoil Kumarin-7-il-Metakrilat) Homopolimerinin Termal Bozunma Kinetiği. J. Inst. Sci. and Tech. 2017;7(4):113-21.