Research Article
BibTex RIS Cite

Numerical Solution for High-Order Linear Complex Differential Equations By Hermite Polynomials

Year 2017, Volume: 7 Issue: 4, 189 - 201, 31.12.2017

Abstract

In this paper, the numerical solutions of complex differential equations are provided by the Hermite

Polynomials and carried on two problems. As a result, the exact solutions and numerical one’s have compared by

tables and graphs that the method is practical, reliable and functional.

References

  • Düşünceli F, Çelik E, 2015. An effective tool: Numerical solutions by Legendre polynomials for high-order linear complex differential equations. British Journal of Applied Science &Technology, 8(4): 348-355.
  • Düşünceli F, Çelik E, 2017. Fibonacci matrix polynomial method for linear complex differential equations. Asian Journal of Mathematics and ComputerResearch, 15(3): 229-238.
  • Gülsu M, Gürbüz B, Öztürk Y, Sezer M, 2011.Laguerre polynomial approach for solving linear delay difference equations.Applied Mathematics and Computation, 217:6765–6776.
  • Sezer M, Yalçınbaş S, 2009.A collocation method to solve higher order linear complex differential equations in rectangular domains.Numerical Methods for Partial Differential Equations, 26:596–611.
  • Tohidi E, 2012. Legendre approximation for solving linear HPDEs and comparison with Taylor and Bernoulli matrix methods.Applied Mathematics, 3:410–416.
  • Yüzbaşı S, Aynıgül M, Sezer M, 2011.A collocation method using Hermite polynomials for approximate solution of pantograph equations.Journal of the Franklin Institute, 348:1128–1139.
  • Yüzbası S, Şahin N, Gülsu M, 2011. A collocation approach for solving a class of complex differential equations in elliptic domains.Journal of Numerical Mathematics, 19: 225–246.

Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri

Year 2017, Volume: 7 Issue: 4, 189 - 201, 31.12.2017

Abstract

Bu makalede lineer kompleks diferansiyel denklemleri hermite polinomları vasıtasıyla nümerik çözümünü
sağladık ve iki test problemine uyguladık. Tam çözümler ile nümerik çözümleri tablo ve grafikler ile karşılaştırdık.
Sonuç olarak metodumuzun güvenilir, pratik ve kullanışlı olduğunu gördük.

References

  • Düşünceli F, Çelik E, 2015. An effective tool: Numerical solutions by Legendre polynomials for high-order linear complex differential equations. British Journal of Applied Science &Technology, 8(4): 348-355.
  • Düşünceli F, Çelik E, 2017. Fibonacci matrix polynomial method for linear complex differential equations. Asian Journal of Mathematics and ComputerResearch, 15(3): 229-238.
  • Gülsu M, Gürbüz B, Öztürk Y, Sezer M, 2011.Laguerre polynomial approach for solving linear delay difference equations.Applied Mathematics and Computation, 217:6765–6776.
  • Sezer M, Yalçınbaş S, 2009.A collocation method to solve higher order linear complex differential equations in rectangular domains.Numerical Methods for Partial Differential Equations, 26:596–611.
  • Tohidi E, 2012. Legendre approximation for solving linear HPDEs and comparison with Taylor and Bernoulli matrix methods.Applied Mathematics, 3:410–416.
  • Yüzbaşı S, Aynıgül M, Sezer M, 2011.A collocation method using Hermite polynomials for approximate solution of pantograph equations.Journal of the Franklin Institute, 348:1128–1139.
  • Yüzbası S, Şahin N, Gülsu M, 2011. A collocation approach for solving a class of complex differential equations in elliptic domains.Journal of Numerical Mathematics, 19: 225–246.
There are 7 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Matematik / Mathematics
Authors

Faruk Düşünceli

Ercan Çelik This is me

Publication Date December 31, 2017
Submission Date May 23, 2017
Acceptance Date July 19, 2017
Published in Issue Year 2017 Volume: 7 Issue: 4

Cite

APA Düşünceli, F., & Çelik, E. (2017). Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri. Journal of the Institute of Science and Technology, 7(4), 189-201.
AMA Düşünceli F, Çelik E. Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri. J. Inst. Sci. and Tech. December 2017;7(4):189-201.
Chicago Düşünceli, Faruk, and Ercan Çelik. “Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları Ile Nümerik Çözümleri”. Journal of the Institute of Science and Technology 7, no. 4 (December 2017): 189-201.
EndNote Düşünceli F, Çelik E (December 1, 2017) Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri. Journal of the Institute of Science and Technology 7 4 189–201.
IEEE F. Düşünceli and E. Çelik, “Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri”, J. Inst. Sci. and Tech., vol. 7, no. 4, pp. 189–201, 2017.
ISNAD Düşünceli, Faruk - Çelik, Ercan. “Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları Ile Nümerik Çözümleri”. Journal of the Institute of Science and Technology 7/4 (December 2017), 189-201.
JAMA Düşünceli F, Çelik E. Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri. J. Inst. Sci. and Tech. 2017;7:189–201.
MLA Düşünceli, Faruk and Ercan Çelik. “Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları Ile Nümerik Çözümleri”. Journal of the Institute of Science and Technology, vol. 7, no. 4, 2017, pp. 189-01.
Vancouver Düşünceli F, Çelik E. Yüksek Mertebeden Lineer Kompleks Diferansiyel Denklemlerin Hermite Polinomları ile Nümerik Çözümleri. J. Inst. Sci. and Tech. 2017;7(4):189-201.