Research Article
BibTex RIS Cite

Theoretical Investigation of The Molecular Structure, Conformational and Nonlinear Optical Properties of Picolinic Acid and Its Derivatives

Year 2018, Volume: 8 Issue: 1, 75 - 83, 31.03.2018
https://doi.org/10.21597/jist.407838

Abstract

In this paper, ab initio Hartree-Fock (HF) and Density Functional Theory (DFT), using Becke-3–

Lee–Yang–Parr (B3LYP) hybrid density functional, calculations have been performed to characterize the ground

state geometrical energy, the dipole moment (μ), polarizability (α), the hyperpolarizability (β) of picolinic acid

(PA), picolinamide (PAA) and picolinic acid hydrazide (PAH) molecules using the 6-311++G (d, p) basis set.

The 1H and 13C NMR chemical shifts were calculated by GIAO approach by using B3LYP/6-311+G (2d, p) and

HF/6-31G (d) level of theory. Also, EHOMO (the highest occupied molecular orbital energy), ELUMO (the lowest

unoccupied molecular orbital energy), HOMO-LUMO energy gap (ΔEg), the dipole moment (μ), polarizability (α)

and the hyperpolarizability (β) are investigated as a function of the torsional angle, for each molecule. In addition,

the trends in the calculated torsional potentials, barrier heights and energy differences between conformers are

discussed. The trans-conformers of the studied molecules were found to be most stable among their conformers.

The potential barrier height of cis- conformers are at 13.24, 10.69, and 9.56 with DFT/B3LYP level of the theory

6-311++G (d, p) basis set and at the HF/6-311++ G (d, p) 13.53, 10.94, and 10.55 kcal/mol, respectively. The

structural parameters of the studied molecule compared with the data given in the literature.

References

  • Ahren, B., 2001. Reducing plasma free fatty acids by acipimox improves glucose tolerance in high-fat fed mice. Acta Physiol. Scand. 171:161-167.
  • Andraud C., Brotin T., Garcia C., Pelle F., Goldner P., Bigot B., Collet A. 1994. Theoretical And Experimental Investigations Of The Nonlinear-Optical Properties Of Vanillin, Polyenovanillin, and Bisvanillin Derivatives. J. Am. Chem. Soc. 116, 2094-2102.
  • Becke A.D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 38(6):3098–310.
  • Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652.
  • Dazzi, C, Candiano G, Massazza S, Ponzetto A, Varesio L. 2001. New highperformance liquid chromatographic method for the detection of picolinic acid in biological fluids. J Chromatogr, 751:61–68.
  • Dennington R., Keith T., Millam J., 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KS.
  • Evans., G. W. 1989. The effect of chromium picolinate on insulin controlled parameters in humans. International Journal of Biosocial and Medical Research, 11: 163-180.
  • Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon, M.S., DeFrees D.J., Pople, J.A, 1982. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. Chem. Phys, 77 3654-3665
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J, 2010. Gaussian Inc., (Wallingford, CT).
  • Gerzon E. D., Aisle J. M., Marilia G.-G., Jeans W. R., Jines E. 2012. Contreras Crystal Structure. Theory and Applications, 1, 30-34
  • Jose, S.P., Mohan, S, 2006. Vibrational spectra and normal coordinate analysis of 2-aminopyridine and 2-amino picoline. Spectrochim. Acta A, 64, 240
  • Kiec-Kononowicz, K. and Szymanska, E, 2002. Antimycobacterial activity of 5-arylidene derivatives of hydantoin. Farmaco, 57, 909–916.
  • Krishnan, R., Binkley, J. S., Seeger, R. and Pople, J. A, 1980. Self-consistent molecular-orbital methods. 20. basis set for correlated wave-functions. J. Chem.Phys, 72: 650–654.
  • Kukovec B. M., Popović Z., Pavlović G., Linarić M. R., 2008. Synthesis and Structure of Cobalt(II) Complexes with Hydroxyl Derivatives of Pyridinecarboxylic Acids Conformation Analysis of Ligands in the Solid State, J. Mol. Struct., 882(1-3): 47−55.
  • Lee, C.T., Yang, W.T. and Parr, R.G, 1988. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B, 37, 785-789.
  • Lipscomb G. F., Garito A. F., Narang R. S, 1981. An exceptionally large electro-optic effect in the organic solid MNA. J. Chem. Phys, 75 1509−1516.
  • Liu L. C., Xing F., Bai Y., Shao M., Li M., Zhu S., 2014 Synthesis, Structure, Thermal Stability and Luminescence of Five 2D Coordination Polymers Based on 4-(4-Oxypyridinium-1-yl) Phthalic Acid and Transition Metal Ions. J. Mol. Struct., 1067: 74−82.
  • Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Kobayashi T. C., Horike S., Takata M., 2004. Guest Shape-Responsive Fitting of Porous Coordination Polymer with Shrinkable Framework, J. Am. Chem. Soc., 126(43): 14063−14070.
  • McLean AD, Chandler GS, 1980. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J Chem Phys, 72:5639–5648
  • Moller C., Plesset M. S., 1934. Note on an approximation treatment for many- electron systems. Phys. Rev., 46 618-622.
  • Pierrat P, Gros P.C, Fort Y, 2005. Solid phase synthesis of pyridine-based derivatives from a 2-chloro-5-bromopyridine scaffold. J. Comb. Chem., 7; 879 886.
  • Rebello T. Lonnerdal B. Hurley L.S, 1982. Picolinic acid in milk, pancreatic juice, and intestine: inadequate for role in zinc absorption. Am J Clin Nutr., 35(1):1-5.
  • Rassolov V-A, Ratner M-A, Pople J-A, Redfern P-C, Curtiss L-A., 2001. 6–31G* basis set for third-row atoms. J Comp Chem., 22:976–984.
  • Takusagawa F., shımada A., 1973. The crystal structure of picolinic acid. Chem. Lett., 1089-1090.
  • Uyeda H. T., Zhao Y. X., Wostyn K., Asselberghs I., Clays K., Persoons A., Therien M. J. 2002. Unusual frequency dispersion effects of the nonlinear optical response in highly conjugated (polypyridil) metal- (porphinato)zinc(II) chromopores. J. Am. Chem. Soc. 124 13806-13813.
  • Zareef, M., Iqbal, R., Zaidi, J. H., Qadeer, G., Wong, W.-Y.,Akhtar, H. 2006. Crystal Structure of 2-Picolinic Acid Hydrazide”, Z. Kristallogr. NCS, 221, 307–308.

Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi

Year 2018, Volume: 8 Issue: 1, 75 - 83, 31.03.2018
https://doi.org/10.21597/jist.407838

Abstract

Bu çalışmada, Pikolinik asit (PAA), pikolinamid (PAA) ve pikolinik asit hidrazid (PAH) moleküllerinin taban
(temel) durum geometrik enerjisini, dipol momenti (μ), polarizebilitesi (α) ve hiperpolarizebilitesini (β) belirlemek
için ab-initio Hartree–Fock (HF) ve Becke-3-Lee-Yang-Parr (B3LYP) hibrit fonksiyonelli Yoğunluk Fonksiyoneli
Teorisi (DFT) ile 6-311++G(d,p) temel seti kullanılarak hesaplamalar yapılmıştır. 1H ve 13C NMR kimyasal kayma
hesaplamaları GIAO yaklaşımına göre B3LYP/6-311+G (2d, p) ve HF/6-31G (d) yöntemleri ile yapılmıştır. Ayrıca,
her molekül için, EHOMO (en yüksek dolu moleküler orbital enerjisi) ve ELUMO (en düşük boş moleküler orbital
enerjisi), ELUMO-EHOMO enerji gap (ΔEg), dipol momenti (μ), polarizebilite (α) ve hiperpolarizebilite (β) değerleri
torsiyon açının fonksiyonu olarak araştırıldı. Bunlara ek olarak, Konformerler arasındaki hesaplanmış torsiyonal
potansiyelleri, bariyer yükseklikleri ve enerji farkları tartışıldı. Çalışılan moleküllerin trans-konformerlerinin
konformerler arasında en kararlı oldukları bulundu. Cis-konformers durumunda potansiyel bariyer yüksekliğinin
DFT / B3LYP/6-311 ++ G (d, p) yönteminde 13.24, 10.69 ve 9.56 olduğu, HF / 6-311++G (d, p) yönteminde
ise 13.53, 10.94 ve 10.55 kkal / mol olduğu sırasıyla bulunmuştur. Çalışılan molekülün yapısal parametreleri,
literatürde verilen verilerle karşılaştırılmıştır.

References

  • Ahren, B., 2001. Reducing plasma free fatty acids by acipimox improves glucose tolerance in high-fat fed mice. Acta Physiol. Scand. 171:161-167.
  • Andraud C., Brotin T., Garcia C., Pelle F., Goldner P., Bigot B., Collet A. 1994. Theoretical And Experimental Investigations Of The Nonlinear-Optical Properties Of Vanillin, Polyenovanillin, and Bisvanillin Derivatives. J. Am. Chem. Soc. 116, 2094-2102.
  • Becke A.D., 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 38(6):3098–310.
  • Becke, A. D., 1993. Density-Functional Thermochemistry .3. The Role of Exact Exchange. J. Chem. Phys., 98 (7): 5648-5652.
  • Dazzi, C, Candiano G, Massazza S, Ponzetto A, Varesio L. 2001. New highperformance liquid chromatographic method for the detection of picolinic acid in biological fluids. J Chromatogr, 751:61–68.
  • Dennington R., Keith T., Millam J., 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KS.
  • Evans., G. W. 1989. The effect of chromium picolinate on insulin controlled parameters in humans. International Journal of Biosocial and Medical Research, 11: 163-180.
  • Francl M.M., Pietro W.J., Hehre W.J., Binkley J.S., Gordon, M.S., DeFrees D.J., Pople, J.A, 1982. Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. Chem. Phys, 77 3654-3665
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Vreven TJ., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox D J, 2010. Gaussian Inc., (Wallingford, CT).
  • Gerzon E. D., Aisle J. M., Marilia G.-G., Jeans W. R., Jines E. 2012. Contreras Crystal Structure. Theory and Applications, 1, 30-34
  • Jose, S.P., Mohan, S, 2006. Vibrational spectra and normal coordinate analysis of 2-aminopyridine and 2-amino picoline. Spectrochim. Acta A, 64, 240
  • Kiec-Kononowicz, K. and Szymanska, E, 2002. Antimycobacterial activity of 5-arylidene derivatives of hydantoin. Farmaco, 57, 909–916.
  • Krishnan, R., Binkley, J. S., Seeger, R. and Pople, J. A, 1980. Self-consistent molecular-orbital methods. 20. basis set for correlated wave-functions. J. Chem.Phys, 72: 650–654.
  • Kukovec B. M., Popović Z., Pavlović G., Linarić M. R., 2008. Synthesis and Structure of Cobalt(II) Complexes with Hydroxyl Derivatives of Pyridinecarboxylic Acids Conformation Analysis of Ligands in the Solid State, J. Mol. Struct., 882(1-3): 47−55.
  • Lee, C.T., Yang, W.T. and Parr, R.G, 1988. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B, 37, 785-789.
  • Lipscomb G. F., Garito A. F., Narang R. S, 1981. An exceptionally large electro-optic effect in the organic solid MNA. J. Chem. Phys, 75 1509−1516.
  • Liu L. C., Xing F., Bai Y., Shao M., Li M., Zhu S., 2014 Synthesis, Structure, Thermal Stability and Luminescence of Five 2D Coordination Polymers Based on 4-(4-Oxypyridinium-1-yl) Phthalic Acid and Transition Metal Ions. J. Mol. Struct., 1067: 74−82.
  • Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Kobayashi T. C., Horike S., Takata M., 2004. Guest Shape-Responsive Fitting of Porous Coordination Polymer with Shrinkable Framework, J. Am. Chem. Soc., 126(43): 14063−14070.
  • McLean AD, Chandler GS, 1980. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. J Chem Phys, 72:5639–5648
  • Moller C., Plesset M. S., 1934. Note on an approximation treatment for many- electron systems. Phys. Rev., 46 618-622.
  • Pierrat P, Gros P.C, Fort Y, 2005. Solid phase synthesis of pyridine-based derivatives from a 2-chloro-5-bromopyridine scaffold. J. Comb. Chem., 7; 879 886.
  • Rebello T. Lonnerdal B. Hurley L.S, 1982. Picolinic acid in milk, pancreatic juice, and intestine: inadequate for role in zinc absorption. Am J Clin Nutr., 35(1):1-5.
  • Rassolov V-A, Ratner M-A, Pople J-A, Redfern P-C, Curtiss L-A., 2001. 6–31G* basis set for third-row atoms. J Comp Chem., 22:976–984.
  • Takusagawa F., shımada A., 1973. The crystal structure of picolinic acid. Chem. Lett., 1089-1090.
  • Uyeda H. T., Zhao Y. X., Wostyn K., Asselberghs I., Clays K., Persoons A., Therien M. J. 2002. Unusual frequency dispersion effects of the nonlinear optical response in highly conjugated (polypyridil) metal- (porphinato)zinc(II) chromopores. J. Am. Chem. Soc. 124 13806-13813.
  • Zareef, M., Iqbal, R., Zaidi, J. H., Qadeer, G., Wong, W.-Y.,Akhtar, H. 2006. Crystal Structure of 2-Picolinic Acid Hydrazide”, Z. Kristallogr. NCS, 221, 307–308.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Güventürk Uğurlu 0000-0003-4171-7879

Publication Date March 31, 2018
Submission Date July 28, 2017
Acceptance Date October 25, 2017
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Uğurlu, G. (2018). Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology, 8(1), 75-83. https://doi.org/10.21597/jist.407838
AMA Uğurlu G. Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. March 2018;8(1):75-83. doi:10.21597/jist.407838
Chicago Uğurlu, Güventürk. “Pikolinik Asit Ve Türevlerinin Moleküler Yapısının, Konformasyonel Ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 8, no. 1 (March 2018): 75-83. https://doi.org/10.21597/jist.407838.
EndNote Uğurlu G (March 1, 2018) Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology 8 1 75–83.
IEEE G. Uğurlu, “Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi”, J. Inst. Sci. and Tech., vol. 8, no. 1, pp. 75–83, 2018, doi: 10.21597/jist.407838.
ISNAD Uğurlu, Güventürk. “Pikolinik Asit Ve Türevlerinin Moleküler Yapısının, Konformasyonel Ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 8/1 (March 2018), 75-83. https://doi.org/10.21597/jist.407838.
JAMA Uğurlu G. Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2018;8:75–83.
MLA Uğurlu, Güventürk. “Pikolinik Asit Ve Türevlerinin Moleküler Yapısının, Konformasyonel Ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology, vol. 8, no. 1, 2018, pp. 75-83, doi:10.21597/jist.407838.
Vancouver Uğurlu G. Pikolinik Asit ve Türevlerinin Moleküler Yapısının, Konformasyonel ve Doğrusal Olmayan Optik Özelliklerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2018;8(1):75-83.