Research Article
BibTex RIS Cite

Modelling, Design and Control of a Single Phase Solid Oxide Fuel Cell based Power System

Year 2018, Volume: 8 Issue: 2, 81 - 88, 30.06.2018
https://doi.org/10.21597/jist.428308

Abstract

In an industrial power generation, power conversion is a significantly important concern. The power

flow is seamless transmitted from fuel cell (FC) to electric grid through power converter components. This paper

presents modelling and simulation of grid connected FC system. One of the most important types of FCs is that

solid oxide fuel cell (SOFC) which has high-temperature technology, and fuel-flexible economic entitlement has

been selected. The interconnection of the SOFC with a DC-DC converter and a DC-AC inverter for interfacing

with the electric grid are modelled and simulated. DC-DC Boost converter is controlled by current and voltage

based cascaded PI controller. Single phase adaptive filter based phase-locked loop (PLL) algorithm and pulse

width modulation (PWM) is used for control of single phase DC-AC inverter. The simulation results show that

the adaptive filter-PLL based control strategy is implemented for the control and synchronizing of the single phase

electric grid connected SOFC system, successfully. All system components are developed by PSCAD/EMTDC

simulation software.

References

  • Akkinapragada N, 2007. Dynamic modelling and simulations of solid oxide fuel cells for grid-tied applications, Faculty of the Graduate School of The University of Missouri-Rolla, Master Thesis, 93p.
  • Boccaletti C, Duni G, Fabbri G, Santini E, 2006. Simulation models of fuel cell systems. 17th International Conference on Electrical Machines, July, Roma, Italy.
  • Chandrakar Y, 2013. Comparison of open loop and closed loop models for dual input DC-DC boost converter. International Journal of Emerging Technology and Advanced Engineering, 3: 307-311.
  • Jang M, Ciobotaru M, Agelidis VG. 2011. Grid-connected fuel cell system based on a boost-inverter with a battery back-up unit. Power Electronics and ECCE Asia (ICPE & ECCE), 30 May-3 June, Jeju, South Korea.
  • Jang M, Ciobotaru M, Agelidis VG, 2013. A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE transactions on power electronics, 28: 279-288.
  • Meral ME, Cuma MU, Teke A, Tümay M, Bayındır KÇ, 2014. Experimental and simulation based study of an adaptive filter controlled solid state transfer switch. Electrical Engineering, 96: 385-395.
  • Meral, ME, Çelik, D, 2016. Grid Tied Fuel Cell System Using Single Phase PLL Based SOGI with PI and PR Current Controllers. Universal Journal of Electrical and Electronic Engineering, 4: 91-96.
  • Salam AA, Mohamed A, Hannan MA, 2009. Improved control strategy for fuel cell and photovoltaic inverter in a microgrid. Wseas Transactions on Power Systems, 4: 331-340.
  • Sharma RK, Mishra S, 2017. Dynamic power management and control of PV PEM fuel Cell based standalone AC/DC microgrid using hybrid energy storage. IEEE Transactions on Industry Applications, 1-12.
  • Shouman N, Hegazy Y, Sakr S. 2012. PSCAD Modeling and analysis of PEM fuel cell based distributed generators. Engineering and Technology (ICET), 10-11 October, Cairo, Egypt.
  • Tao Z, Bi L, Yan L, Sun W, Zhu Z, Peng R, Liu W, 2009. A novel single phase cathode material for a proton-conducting SOFC. Electrocemistry Communication, 11: 688-690.
  • Yang Y, Luo X, Dai C, Chen W, Liu Z, Li Q, 2014. Dynamic modeling and dynamic responses of grid-connected fuel cell. International Journal of Hydrogen Energy, 39: 14296-14305.
  • Zhao, W, Lu DDC, Agelidis VG, 2011. Current control of grid-connected boost inverter with zero steady-state error. IEEE Transactions on Power Electronics, 26: 2825-2834.

Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü

Year 2018, Volume: 8 Issue: 2, 81 - 88, 30.06.2018
https://doi.org/10.21597/jist.428308

Abstract

Endüstriyel bir enerji üretiminde, güç dönüşümü önemli bir ilgi konusudur. Güç akışı, güç dönüştürücü
bileşenleri tarafından yakıt hücresinden (YH) elektrik şebekesine kesintisiz olarak iletilir. Bu çalışmada, şebekeye
bağlı YH sisteminin modellenmesi ve benzetim çalışması sunulmaktadır. Yüksek sıcaklık teknolojisine ve esnek
yakıt ekonomisine sahip en önemli YH’ den biri olan katı oksit yakıt hücresi (KOYH) seçilmiştir. KOYH’ yi elektrik
şebekesine bağlanmak için bir DA-DA dönüştürücü ve bir DA-AA evirici ile ara bağlantıları modellenmiş ve
benzetim çalışması yapılmıştır. DA-DA yükseltici dönüştürücü, akım ve gerilim tabanlı artarda bağlanmış oransal
integral (OI) ile kontrol edilmiştir. Tek fazlı DA-AA eviricinin kontrolü için tek fazlı uyarlanabilir süzgeç- faz
kilitlemeli döngü (FKD) tabanlı kontrol stratejisi ve darbe genişlik modülasyonu (DGM) kullanılmıştır. Benzetim
sonuçları, uyarlanabilir süzgeç-FKD tabanlı kontrol stratejisinin, tek fazlı elektrik şebekesine bağlı KOYH
sisteminin kontrolü ve senkronizasyonu için başarıyla uygulandığını göstermektedir. Sistemin tüm bileşenleri
PSCAD/EMTDC benzetim programı ile geliştirilmiştir.

References

  • Akkinapragada N, 2007. Dynamic modelling and simulations of solid oxide fuel cells for grid-tied applications, Faculty of the Graduate School of The University of Missouri-Rolla, Master Thesis, 93p.
  • Boccaletti C, Duni G, Fabbri G, Santini E, 2006. Simulation models of fuel cell systems. 17th International Conference on Electrical Machines, July, Roma, Italy.
  • Chandrakar Y, 2013. Comparison of open loop and closed loop models for dual input DC-DC boost converter. International Journal of Emerging Technology and Advanced Engineering, 3: 307-311.
  • Jang M, Ciobotaru M, Agelidis VG. 2011. Grid-connected fuel cell system based on a boost-inverter with a battery back-up unit. Power Electronics and ECCE Asia (ICPE & ECCE), 30 May-3 June, Jeju, South Korea.
  • Jang M, Ciobotaru M, Agelidis VG, 2013. A single-phase grid-connected fuel cell system based on a boost-inverter. IEEE transactions on power electronics, 28: 279-288.
  • Meral ME, Cuma MU, Teke A, Tümay M, Bayındır KÇ, 2014. Experimental and simulation based study of an adaptive filter controlled solid state transfer switch. Electrical Engineering, 96: 385-395.
  • Meral, ME, Çelik, D, 2016. Grid Tied Fuel Cell System Using Single Phase PLL Based SOGI with PI and PR Current Controllers. Universal Journal of Electrical and Electronic Engineering, 4: 91-96.
  • Salam AA, Mohamed A, Hannan MA, 2009. Improved control strategy for fuel cell and photovoltaic inverter in a microgrid. Wseas Transactions on Power Systems, 4: 331-340.
  • Sharma RK, Mishra S, 2017. Dynamic power management and control of PV PEM fuel Cell based standalone AC/DC microgrid using hybrid energy storage. IEEE Transactions on Industry Applications, 1-12.
  • Shouman N, Hegazy Y, Sakr S. 2012. PSCAD Modeling and analysis of PEM fuel cell based distributed generators. Engineering and Technology (ICET), 10-11 October, Cairo, Egypt.
  • Tao Z, Bi L, Yan L, Sun W, Zhu Z, Peng R, Liu W, 2009. A novel single phase cathode material for a proton-conducting SOFC. Electrocemistry Communication, 11: 688-690.
  • Yang Y, Luo X, Dai C, Chen W, Liu Z, Li Q, 2014. Dynamic modeling and dynamic responses of grid-connected fuel cell. International Journal of Hydrogen Energy, 39: 14296-14305.
  • Zhao, W, Lu DDC, Agelidis VG, 2011. Current control of grid-connected boost inverter with zero steady-state error. IEEE Transactions on Power Electronics, 26: 2825-2834.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Doğan Çelik This is me 0000-0002-8348-130X

Mehmet Emin Meral 0000-0002-8348-130X

Publication Date June 30, 2018
Submission Date October 23, 2017
Acceptance Date January 26, 2018
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite

APA Çelik, D., & Meral, M. E. (2018). Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü. Journal of the Institute of Science and Technology, 8(2), 81-88. https://doi.org/10.21597/jist.428308
AMA Çelik D, Meral ME. Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü. J. Inst. Sci. and Tech. June 2018;8(2):81-88. doi:10.21597/jist.428308
Chicago Çelik, Doğan, and Mehmet Emin Meral. “Tek Fazlı Katı Oksit Yakıt Hücresi Tabanlı Güç Sisteminin Modellenmesi, Tasarlanması Ve Kontrolü”. Journal of the Institute of Science and Technology 8, no. 2 (June 2018): 81-88. https://doi.org/10.21597/jist.428308.
EndNote Çelik D, Meral ME (June 1, 2018) Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü. Journal of the Institute of Science and Technology 8 2 81–88.
IEEE D. Çelik and M. E. Meral, “Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü”, J. Inst. Sci. and Tech., vol. 8, no. 2, pp. 81–88, 2018, doi: 10.21597/jist.428308.
ISNAD Çelik, Doğan - Meral, Mehmet Emin. “Tek Fazlı Katı Oksit Yakıt Hücresi Tabanlı Güç Sisteminin Modellenmesi, Tasarlanması Ve Kontrolü”. Journal of the Institute of Science and Technology 8/2 (June 2018), 81-88. https://doi.org/10.21597/jist.428308.
JAMA Çelik D, Meral ME. Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü. J. Inst. Sci. and Tech. 2018;8:81–88.
MLA Çelik, Doğan and Mehmet Emin Meral. “Tek Fazlı Katı Oksit Yakıt Hücresi Tabanlı Güç Sisteminin Modellenmesi, Tasarlanması Ve Kontrolü”. Journal of the Institute of Science and Technology, vol. 8, no. 2, 2018, pp. 81-88, doi:10.21597/jist.428308.
Vancouver Çelik D, Meral ME. Tek Fazlı Katı Oksit Yakıt Hücresi tabanlı Güç Sisteminin Modellenmesi, Tasarlanması ve Kontrolü. J. Inst. Sci. and Tech. 2018;8(2):81-8.