Research Article
BibTex RIS Cite

Characterization and Photovoltaic Propertiesof Cr-doped ZnS Quantum Dots

Year 2018, Volume: 8 Issue: 2, 89 - 97, 30.06.2018
https://doi.org/10.21597/jist.428315

Abstract

The structural, optical, magnetic and photovoltaic properties of pure and Cr doped ZnS quantum

dots (QD) were investigated at room temperature. It was confirmed by X-ray diffraction analysis that there are

no mixed phases in the pure and Cr doped ZnS QDs and that the QDs have a cubic structure. It was observed

that the wavelengths of the Cr-doped QDs show a blue shift compared to pure ZnS QDs with the UV-visible

absorption spectrum. In other words, the bandgap of ZnS QDs indicated an increase when it was doped with Cr.

With magnetic hysteresis measurements, Cr-doped ZnS QDs were shown to exhibit superparamagnetic behavior

at room temperature. In addition, the photovoltaic properties of pure and Cr doped ZnS QDs were investigated by

incident photon-to-current efficiency (IPCE) measurements. The results show that Cr-doped ZnS QDs can be used

as sensitizers to improve the performance of solar cells.

References

  • Dabbousi SO, Viejo JR, Mikulec FV, Heine JR, Mattousi H, Ober R, Jensen KF, Bawendi MG, 1997. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry101: 9463–9475.
  • Neeleswar S, Chen CL, Tsai CB, Chen YY, 2005, 2005. Size-dependent properties of CdSe quantum dots. Physical Review B 71: 201307.
  • Sambur JB, Novet T, Parkinson BA, 2010.Multiple exciton collection in sensitized photovoltaic system. Science 63: 63-66.
  • Ruhle S, Shalom M, Zaban A, 2010. Quantum –dot-sensitized solar cells. Chem Physical Chemstry 11: 2290-2304.
  • Soo YS, Ming ZH, Huang, SW, Kao YH, Bhargava RN, Gallagher D, 1994. Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. Physical Review B 50: 7602
  • Alivisatos AP, 1996. Semiconductor clusters nanocrystals and quantum dots. Science 271: 933-937.
  • Wang L, Xu, X, Yuan X, 2010. Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. Journal of Luminescence 130: 137-140.
  • Yang H, Santra, S, Holloway P, 2005.Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. Journal of Nanoscience and Nanotechnology 5: 1364-1375.
  • Peng WQ, Qu SC, Cong GW, Wang ZG, 2005.Optical and magnetic properties of ZnS nanoparticles doped with Mn2+. Journal of Crystal Growth 282: 179-185.
  • SantraPK, Kamat PV, 2012. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of American Chemical Society 134: 2508-2511
  • Wang Q, Liu X, Wei X, Dai J, Li W, 2015. Ferromagnetic property of Co and Ni doped TiO2 nanoparticles. Journal of Nanomaterials. 2015: 371582.
  • Pazhanivelu V, Selvadurai APB, Zhao Y, Thiyagarajan R, Murugraj R, 2016. Room temperature ferromagnetism in Mn-doped ZnO:Co nanoparticles by co-precipitation method. Physics B: Condensend Matter. 481: 91-96.
  • Srivastava P, Kumar P, Singh K, 2011. Romm temperature ferromagnetism in magiz sized Cr doped CdS diluted magnetic semiconducting quantum dots. Journal of Nanoparticles Research. 13:5077-5085.
  • BhargavaRN, GallagherD, HongX, NurmikkoA, 1994. Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters 72:416.
  • Horoz S, Dai Q, Maloney FS, Yakami BR, Pikal JM, Zhang X, Wang J, Wang W, Tang J, 2015. Absoprtion induced by Mn-doping of ZnS for improved senistized quantum dot soalr cells. Physical Review Applied. 3:024011.
  • Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, 2003. Wide band gap ferromagnetic semiconductor and oxides. Journal of Applied Physics 93:1.
  • Ren G, Lin Z, Wang C, Liu W, Zhang J, Huang F, Liang J, 2007. Relationship between the coprecipitation mechanism doping structure and physical properties of Zn1-xCoxS nanocrystallites. Nanotechnology 18: 035705.
  • Lakshmi PVB, Raj KS, Ramahandran K, 2008. Synthesis and characterization of nano ZnS doped with Mn. Crystal and Research Technology 44:153-158.
  • Kumar S, Kumar S, Verma NK, Chakarvarti SK, 2011.Room temperature ferromagnetic behavior of Eu doped Cd1−xZnxS nanoparticles. Journal of Materials Science: Materials in Electronics 22:523-526.
  • Rao SS, Durga IK, Varma CVT, Punnoose D, Kim SK, Kim HJ, 2015. Enhance the performance of quantum dot-sensitized solar cell by manganese-doped ZnS films as a passivation layer. Organic Electronics. 26: 200-207.
  • Horoz S, Yakami BR, Poudyal U, Pikal JM, Wang W, Tang J, 2016. Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties. AIP Advanced. 6:045119.
  • Horoz S, Sahin O, 2017. Investigations of structural, optical, and photovoltaic properties of Fe-alloyed ZnS quantum dots.Journal of Materials Science: Materials in Electronics. 28: 9559-9565.
  • Lin CF, Liang EZ, Shih SM, Su WF, 2002. CdS Nanoparticle LightEmitting Diode on Si.In Symposium on Integrated Optoelectronic Devices; International Society for Optics and Photonics. 102.
  • So WW, Jang JS, Rhee YW, Kim KJ, Moon SJ, 2001. Preparation of nanosized crystalline CdS particles by the hydrothermal treatment.Journal of Colloid and Interface Science.237: 136–141. Pan A, Yang H, Liu R, Yu R, Zou B, Wang Z, 2005. Color-Tunable Photoluminescence of Alloyed CdS x Se1-x Nanobelts.Journal of the American Chemical Society. 127: 15692-15693.
  • Yu LM, Zhu CC, Fan XH, Qi LJ, Yan W, 2006. CdS/SiO2 nanowire arrays and CdS nanobelt synthesized by thermal evaporation.Journal of Zhejiang University Science A. 7: 1956-1960.
  • Horoz S, Liu L, Dai Q, Yakami BR, Pikal JM, Wang W, Tang J, 2012.CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications.Appl. Phys. Lett. 101: 223902.
  • Kripal R, Gupta AK, Mishta SK, Srivastava K, Pandey AC, Prakash SG, 2010. Photoluminescence and photoconductivity of ZnS: Mn2+ nanoparticles synthesized via co-precipitation method. Spectrochimica Acta Part A.76: 523-530.
  • Lazos CG, Rosendo E, Juarez H, Salgado GG, Diaz T, Falfan MR, Olivia AI, Quintana P, Aguilar DH, CauichW, 2008.Hexagonal Phase of CdS Thin Films Obtained by Oscillating Chemical Bath. Journal of the Electrochemical Society 155, 158-162.
  • Brus L. 1956. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90: 2555-2560.
  • Xie J, 2010. First-principles study on the magnetism in ZnS-based diluted magnetic semiconductors. J. Magn. Magn. Mater. 322: 37-41.
  • Horoz S, 2017. Effect of Eu2+ doping on structural, optical, magnetic and photovoltaic properties of ZnS quantum dots. Superlattices and Microstructures 2017: 1-7.
  • Li T, Zhou X, Zhou H, 2014. Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells. Int. J. Photoenergy. 2014: 569763.

Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi

Year 2018, Volume: 8 Issue: 2, 89 - 97, 30.06.2018
https://doi.org/10.21597/jist.428315

Abstract

Saf ve Cr katkılı ZnS kuantum nokta (QD) ‘larının yapısal, optiksel, manyetiksel ve fotovoltaik özellikleri
oda sıcaklığında incelendi. Saf ve Cr katkılı ZnS QD’ler içerisinde herhangi bir karışık faz bulunmadığı ve
QD’lerin kübik yapıya sahip olduğu X-ışını kırınımı analizi ile doğrulandı. UV-visible absorpsiyon spektrumu ile
Cr katkılı QD’lere ait dalga boylarının saf ZnS QD’lere nazaran mavi kayma gösterdiği gözlemlendi. Baska bir
deyişle, ZnS QD’lerin yasak enerji aralığı Cr ile katkılandığında artış gösterdiği tespit edildi. Manyetik histerezis
ölçümleri ile, Cr katkılı ZnS QD’lerin, süperparamanyetik davranış sergiledikleri gösterildi. Ayrıca, Saf ve Cr
katkılı ZnS QD’lerin fotovoltaik özellikleri uyarılmış foton dönüşüm verimi (IPCE) ölçümleri ile incelendi. Elde
edilen sonuçlar, Cr katkılı ZnS QD’lerin güneş pillerinin performansını artırmak için duyarlaştırıcı olarak kullanılabileceğini
göstermektedir.

References

  • Dabbousi SO, Viejo JR, Mikulec FV, Heine JR, Mattousi H, Ober R, Jensen KF, Bawendi MG, 1997. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry101: 9463–9475.
  • Neeleswar S, Chen CL, Tsai CB, Chen YY, 2005, 2005. Size-dependent properties of CdSe quantum dots. Physical Review B 71: 201307.
  • Sambur JB, Novet T, Parkinson BA, 2010.Multiple exciton collection in sensitized photovoltaic system. Science 63: 63-66.
  • Ruhle S, Shalom M, Zaban A, 2010. Quantum –dot-sensitized solar cells. Chem Physical Chemstry 11: 2290-2304.
  • Soo YS, Ming ZH, Huang, SW, Kao YH, Bhargava RN, Gallagher D, 1994. Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. Physical Review B 50: 7602
  • Alivisatos AP, 1996. Semiconductor clusters nanocrystals and quantum dots. Science 271: 933-937.
  • Wang L, Xu, X, Yuan X, 2010. Preparation and photoluminescent properties of doped nanoparticles of ZnS by solid-state reaction. Journal of Luminescence 130: 137-140.
  • Yang H, Santra, S, Holloway P, 2005.Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. Journal of Nanoscience and Nanotechnology 5: 1364-1375.
  • Peng WQ, Qu SC, Cong GW, Wang ZG, 2005.Optical and magnetic properties of ZnS nanoparticles doped with Mn2+. Journal of Crystal Growth 282: 179-185.
  • SantraPK, Kamat PV, 2012. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. Journal of American Chemical Society 134: 2508-2511
  • Wang Q, Liu X, Wei X, Dai J, Li W, 2015. Ferromagnetic property of Co and Ni doped TiO2 nanoparticles. Journal of Nanomaterials. 2015: 371582.
  • Pazhanivelu V, Selvadurai APB, Zhao Y, Thiyagarajan R, Murugraj R, 2016. Room temperature ferromagnetism in Mn-doped ZnO:Co nanoparticles by co-precipitation method. Physics B: Condensend Matter. 481: 91-96.
  • Srivastava P, Kumar P, Singh K, 2011. Romm temperature ferromagnetism in magiz sized Cr doped CdS diluted magnetic semiconducting quantum dots. Journal of Nanoparticles Research. 13:5077-5085.
  • BhargavaRN, GallagherD, HongX, NurmikkoA, 1994. Optical properties of manganese-doped nanocrystals of ZnS. Physical Review Letters 72:416.
  • Horoz S, Dai Q, Maloney FS, Yakami BR, Pikal JM, Zhang X, Wang J, Wang W, Tang J, 2015. Absoprtion induced by Mn-doping of ZnS for improved senistized quantum dot soalr cells. Physical Review Applied. 3:024011.
  • Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, 2003. Wide band gap ferromagnetic semiconductor and oxides. Journal of Applied Physics 93:1.
  • Ren G, Lin Z, Wang C, Liu W, Zhang J, Huang F, Liang J, 2007. Relationship between the coprecipitation mechanism doping structure and physical properties of Zn1-xCoxS nanocrystallites. Nanotechnology 18: 035705.
  • Lakshmi PVB, Raj KS, Ramahandran K, 2008. Synthesis and characterization of nano ZnS doped with Mn. Crystal and Research Technology 44:153-158.
  • Kumar S, Kumar S, Verma NK, Chakarvarti SK, 2011.Room temperature ferromagnetic behavior of Eu doped Cd1−xZnxS nanoparticles. Journal of Materials Science: Materials in Electronics 22:523-526.
  • Rao SS, Durga IK, Varma CVT, Punnoose D, Kim SK, Kim HJ, 2015. Enhance the performance of quantum dot-sensitized solar cell by manganese-doped ZnS films as a passivation layer. Organic Electronics. 26: 200-207.
  • Horoz S, Yakami BR, Poudyal U, Pikal JM, Wang W, Tang J, 2016. Controlled synthesis of Eu2+ and Eu3+ doped ZnS quantum dots and their photovoltaic and magnetic properties. AIP Advanced. 6:045119.
  • Horoz S, Sahin O, 2017. Investigations of structural, optical, and photovoltaic properties of Fe-alloyed ZnS quantum dots.Journal of Materials Science: Materials in Electronics. 28: 9559-9565.
  • Lin CF, Liang EZ, Shih SM, Su WF, 2002. CdS Nanoparticle LightEmitting Diode on Si.In Symposium on Integrated Optoelectronic Devices; International Society for Optics and Photonics. 102.
  • So WW, Jang JS, Rhee YW, Kim KJ, Moon SJ, 2001. Preparation of nanosized crystalline CdS particles by the hydrothermal treatment.Journal of Colloid and Interface Science.237: 136–141. Pan A, Yang H, Liu R, Yu R, Zou B, Wang Z, 2005. Color-Tunable Photoluminescence of Alloyed CdS x Se1-x Nanobelts.Journal of the American Chemical Society. 127: 15692-15693.
  • Yu LM, Zhu CC, Fan XH, Qi LJ, Yan W, 2006. CdS/SiO2 nanowire arrays and CdS nanobelt synthesized by thermal evaporation.Journal of Zhejiang University Science A. 7: 1956-1960.
  • Horoz S, Liu L, Dai Q, Yakami BR, Pikal JM, Wang W, Tang J, 2012.CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications.Appl. Phys. Lett. 101: 223902.
  • Kripal R, Gupta AK, Mishta SK, Srivastava K, Pandey AC, Prakash SG, 2010. Photoluminescence and photoconductivity of ZnS: Mn2+ nanoparticles synthesized via co-precipitation method. Spectrochimica Acta Part A.76: 523-530.
  • Lazos CG, Rosendo E, Juarez H, Salgado GG, Diaz T, Falfan MR, Olivia AI, Quintana P, Aguilar DH, CauichW, 2008.Hexagonal Phase of CdS Thin Films Obtained by Oscillating Chemical Bath. Journal of the Electrochemical Society 155, 158-162.
  • Brus L. 1956. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90: 2555-2560.
  • Xie J, 2010. First-principles study on the magnetism in ZnS-based diluted magnetic semiconductors. J. Magn. Magn. Mater. 322: 37-41.
  • Horoz S, 2017. Effect of Eu2+ doping on structural, optical, magnetic and photovoltaic properties of ZnS quantum dots. Superlattices and Microstructures 2017: 1-7.
  • Li T, Zhou X, Zhou H, 2014. Effect of Mn Doping on Properties of CdS Quantum Dot-Sensitized Solar Cells. Int. J. Photoenergy. 2014: 569763.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Sabit Horoz 0000-0002-3238-8789

Publication Date June 30, 2018
Submission Date August 24, 2017
Acceptance Date December 25, 2017
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite

APA Horoz, S. (2018). Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 8(2), 89-97. https://doi.org/10.21597/jist.428315
AMA Horoz S. Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. June 2018;8(2):89-97. doi:10.21597/jist.428315
Chicago Horoz, Sabit. “Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu Ve Fotovoltaik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 8, no. 2 (June 2018): 89-97. https://doi.org/10.21597/jist.428315.
EndNote Horoz S (June 1, 2018) Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 8 2 89–97.
IEEE S. Horoz, “Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 8, no. 2, pp. 89–97, 2018, doi: 10.21597/jist.428315.
ISNAD Horoz, Sabit. “Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu Ve Fotovoltaik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 8/2 (June 2018), 89-97. https://doi.org/10.21597/jist.428315.
JAMA Horoz S. Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2018;8:89–97.
MLA Horoz, Sabit. “Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu Ve Fotovoltaik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 8, no. 2, 2018, pp. 89-97, doi:10.21597/jist.428315.
Vancouver Horoz S. Cr Katkılı ZnS Kuantum Noktalarının Karakterizasyonu ve Fotovoltaik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2018;8(2):89-97.