Research Article
BibTex RIS Cite

Convergence of S-Iteration Method for Continuous Functions on An Arbitrary Interval

Year 2018, Volume: 8 Issue: 2, 201 - 213, 30.06.2018
https://doi.org/10.21597/jist.428379

Abstract

In this paper, we consider S-iteration to find fixed points of continuous mappings on an arbitrary

interval. We give some necessary and sufficient conditions for the convergence of this iteration. Also, we proved

that the rate of convergence of S-iteration is better than some other iterations for continuous and nondecreasing

mappings. It is also noted that the method of proof of Lemma 3 using S-iteration is slightly different from that using

the iteration schemes like Mann.

References

  • Agarwal RP, O’Regan D, Sahu DR, 2007. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex. Anal., 8(1): 61–79.
  • Mann WR, 1953. Mean value methods in iteration. Proc. Amer. Math. Soc., 4: 506–510.
  • Ishikawa S, 1974. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 44: 147-150.
  • Rhoades BE, 1974. Fixed point iterations using in finite matrices. Trans. Amer. Math. Soc., 196: 161-176.
  • Borwein D, Borwein J, 1991. Fixed point iterations for real functions. J. Math. Anal. Appl., 157(1): 112-126.
  • Qing Y, Qihou L, 2006. The necessary and sufficient condition for the convergence of Ishikawa iteration on an arbitrary interval. J. Math. Anal. Appl., 323 (2): 1383-1386.
  • Rhoades BE, 1976. Comments on two fixed point iteration methods. J. Math. Anal. Appl., 56: 741–750.
  • Phuengrattana W, Suantai S, 2011. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math., 235: 3006-3014
  • Noor MA, 2000. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251:217–229.
  • Dong QL, He S, Liu X, 2013. Rate of convergence of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval. J. Ineq. Appl., 2013.1: doi: 10.1186/1029-242X-2013-269.
  • Khan SH, 2013. A Picard-Mann hybrid iterative process. Fixed Point Theory and Appl., doi:10.1186/1687-1812-2013-69.
  • Sahu DR, 2011. Applications of S iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory, 12(1): 187-204.
  • Karahan I, Ozdemir M, 2013. Fixed point problems of Picard-Mann hybrid iterative process for continuous functions on an arbitrary interval. Fixed Point Theory and Appl., 2013:244, doi: 10.1186/1687-1812-2013-244.

Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı

Year 2018, Volume: 8 Issue: 2, 201 - 213, 30.06.2018
https://doi.org/10.21597/jist.428379

Abstract

Bu makalede keyfi bir aralıkta tanımlanan sürekli fonksiyonların sabit noktalarını bulmak için S-iterasyonu
ele alınmıştır. Bu iterasyonun yakınsaması için gerek ve yeter şartlar verilmiştir. Ayrıca sürekli ve azalmayan
dönüşümler için S-iterasyonunun diğer bazı itersayonlardan daha hızlı yakınsadığı ispatlanmıştır. S iterasyonu
için verilen Lemma 3 ün ispat yönteminin Mann gibi diğer iterasyonlar için verilen ispat yöntemlerinden farklı
olduğuna dikkat edilmelidir.

References

  • Agarwal RP, O’Regan D, Sahu DR, 2007. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex. Anal., 8(1): 61–79.
  • Mann WR, 1953. Mean value methods in iteration. Proc. Amer. Math. Soc., 4: 506–510.
  • Ishikawa S, 1974. Fixed points by a new iteration method. Proc. Amer. Math. Soc., 44: 147-150.
  • Rhoades BE, 1974. Fixed point iterations using in finite matrices. Trans. Amer. Math. Soc., 196: 161-176.
  • Borwein D, Borwein J, 1991. Fixed point iterations for real functions. J. Math. Anal. Appl., 157(1): 112-126.
  • Qing Y, Qihou L, 2006. The necessary and sufficient condition for the convergence of Ishikawa iteration on an arbitrary interval. J. Math. Anal. Appl., 323 (2): 1383-1386.
  • Rhoades BE, 1976. Comments on two fixed point iteration methods. J. Math. Anal. Appl., 56: 741–750.
  • Phuengrattana W, Suantai S, 2011. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math., 235: 3006-3014
  • Noor MA, 2000. New approximation schemes for general variational inequalities. J. Math. Anal. Appl., 251:217–229.
  • Dong QL, He S, Liu X, 2013. Rate of convergence of Mann, Ishikawa and Noor iterations for continuous functions on an arbitrary interval. J. Ineq. Appl., 2013.1: doi: 10.1186/1029-242X-2013-269.
  • Khan SH, 2013. A Picard-Mann hybrid iterative process. Fixed Point Theory and Appl., doi:10.1186/1687-1812-2013-69.
  • Sahu DR, 2011. Applications of S iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory, 12(1): 187-204.
  • Karahan I, Ozdemir M, 2013. Fixed point problems of Picard-Mann hybrid iterative process for continuous functions on an arbitrary interval. Fixed Point Theory and Appl., 2013:244, doi: 10.1186/1687-1812-2013-244.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

İbrahim Karahan 0000-0001-6191-7515

Publication Date June 30, 2018
Submission Date December 25, 2017
Acceptance Date February 21, 2018
Published in Issue Year 2018 Volume: 8 Issue: 2

Cite

APA Karahan, İ. (2018). Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı. Journal of the Institute of Science and Technology, 8(2), 201-213. https://doi.org/10.21597/jist.428379
AMA Karahan İ. Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı. J. Inst. Sci. and Tech. June 2018;8(2):201-213. doi:10.21597/jist.428379
Chicago Karahan, İbrahim. “Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı”. Journal of the Institute of Science and Technology 8, no. 2 (June 2018): 201-13. https://doi.org/10.21597/jist.428379.
EndNote Karahan İ (June 1, 2018) Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı. Journal of the Institute of Science and Technology 8 2 201–213.
IEEE İ. Karahan, “Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı”, J. Inst. Sci. and Tech., vol. 8, no. 2, pp. 201–213, 2018, doi: 10.21597/jist.428379.
ISNAD Karahan, İbrahim. “Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı”. Journal of the Institute of Science and Technology 8/2 (June 2018), 201-213. https://doi.org/10.21597/jist.428379.
JAMA Karahan İ. Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı. J. Inst. Sci. and Tech. 2018;8:201–213.
MLA Karahan, İbrahim. “Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı”. Journal of the Institute of Science and Technology, vol. 8, no. 2, 2018, pp. 201-13, doi:10.21597/jist.428379.
Vancouver Karahan İ. Keyfi Aralıkta Sürekli Fonksiyonlar İçin S-İterasyon Metodunun Yakınsaklığı. J. Inst. Sci. and Tech. 2018;8(2):201-13.