Review
BibTex RIS Cite

Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı

Year 2018, Volume: 8 Issue: 3, 45 - 51, 30.09.2018
https://doi.org/10.21597/jist.458567

Abstract

Bu çalışma bitkilerde önemli fonksiyonlara sahip olan bor (B) elementinin topraktan veya yapraktan alınması, bitki içerisinde taşınması ve özellikle çilek tarımında kullanımı konularını içermektedir. Bu kapsamda yapılan literatür çalışmaları ile toprak, bitki ve B ilişkilerindeki mekanizma açıklanmaya çalışılmıştır. B alımının türlere göre değiştiği, ancak bu durumun dikkate alınmadan bazı bilimsel çalışmaların planlanarak birbiriyle çelişkili ve tam açıklanamayan sonuçlara ulaşıldığı dikkati çekmiştir. Yine pratikte de gözlemsel olarak B kullanımıyla ilgili bazı hataların yapıldığı tespit edilmiştir. Derlemede değişik meyve türlerinde, ağırlıklı olarak da çilekte bor uygulamalarıyla ilgili çalışmalara yer verilmiştir. Çilekte bor’un ksilemde taşınması nedeniyle toprak uygulamalarının yaprak uygulamalarına göre daha etkin olacağı vurgulanmıştır. Ayrıca yapılan çalışmaların, günümüzün en önemli problemi olan farklı stres koşullarında B elementinin etkinliğini ortaya koyduğu da dikkati çekmiştir. Optimum B düzeyinin çok dar bir aralıkta yer almasından dolayı, eksik veya toksik doza ulaşılmaması için bundan sonra yapılacak olan doz çalışmalarında çok dikkatli davranılması önerilmiştir.

References

  • Abdollahi M, Eshghi S, Tafazzoli E, Moosavi N, 2012. Effects of Paclobutrazol, Boric Acid and Zinc Sulfate on Vegetative and Reproductive Growth of Strawberry cv. Selva. Journal of Agricultural Science and Technology. 14: 357-363.
  • Bassil E, Hu H, Brown PH, 2004. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiology. 136:3383–3395.
  • Bell RW, 1997. Diagnosis and prediction of boron deficiency for plant production. Plant and Soil. 193: 149-168.
  • Blamey FPC, Edwards DG, Asher CJ, 1987. Nutritional Disorders of Sunflower. Department of Agriculture, University of Queensland, St Lucia, Queensland. 72 p.
  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V, 2002. Boron in plant biology. Plant Biology. 4: 205–223.
  • Brown PH, Hu H, 1996. Phloem Mobility of Boron is Species Dependent: Evidence for Phloem Mobility in Sorbitol-rich Species. Annals of Botany. 77: 497-505.
  • Cakmak I, Kurz H, Marschner H, 1995. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum. 95: 11–18.
  • Çakmak İ, Römheld V, 1997. Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil. 193:71-83.
  • Dell B, Huang L, 1997. Physiological response of plants to low boron. Plant and Soil. 193: 103-120.
  • Dickinson DB, 1978. Influence of borate and pentaerythritol concentrations ongermination and tube growth of Lilium longiflorum pollen. Journal of the American Society for Horticultural Science. 103: 413–416.
  • Dorfmüller W, 1941. Über den Einfluss des Bors auf den Wasserhaushalt der Leguminosen, Planta 32: 51–65.
  • Erdal I, Kepenek K, Kızılgöz I, 2005. Effect of Elemental Sulphur and Sulphur Containing Waste on The Iron Nutrition of strawberry Plants Grown in a Calcareous Soil. Biological Agriculture and Horticulture. 23 (3): 263-272
  • Esringü A, Turan M, Günes A, Eşitken A, Sambo P, 2011. Boron application improves on yield and chemical composition of strawberry. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. 61: 245-252.
  • Giampieri F, Alvarez-Suarez M, Mazzoni L, Romandini S, Bompadre S, Diamanti J, Capocasa F, Mezzetti B, Quiles JL, Ferreiro MS, Tulipani S, Battino M, 2013. ‘The potential impact of strawberry on human health’. Natural Product Research. 27: 448-455.
  • Gupta UC, 1980. Boron nutrition of crops. Advances in Agronomy. 31: 273–307.
  • Guttridge CG, Turnbull JM, 1975. Improving anther dehiscence and pollen germination in strawberry with boric acid and salts of divalent cations. Horticulture Research. 14: 73–79.
  • Gülsoy E., Yılmaz H, 2004. Van Ekolojik Koşullarında Farklı Örtü Tiplerinin Bazı Çilek Çeşitlerinin Adaptasyonu Üzerine Etkileri. Y. Y. Ü. Fen Bilimleri Enstitüsü Dergisi, 9 (1): 50-57.
  • Güneş A, Turan M, Kitir N, Tüfenkçi MS, Cimrin KM, Yıldırım E, Erçişli S, 2016. Effects of Bio-Bor Fertilizer Applications on Fruit Yield, Antioxidant Enzyme Activity and Freeze Injury of Strawberry. Erwerbs-Obstbau. 3: 177-184.
  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY, 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexosesin leaves of citrus seedlings. Journal of Plant Physiology. 165: 1331–1341.
  • Haydon GF, 1981. Boron Toxicity of Strawberry. Commun. Communications in Soil Science and Plant Analysis. 12(11): 1085-1091.
  • Hu H, Brown PH, Labavitch JM, 1996. Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany. 47: 227–232.
  • Huang L, Ye Z, Bell RW, Dell B, 2005. Boron nutrition and chilling tolerance of warm climate crop species. Annals of Botany. 96:755–767.
  • John MK, Daubeny HA, McElroy FD, Garland M, 1976. Genotype influence on elemental composition of strawberry tissues. Journal of the American Society for Horticultural Science.101: 438-441.
  • Kacar B, Katkat AV, 2009. Bor. Bitki Besleme, s. 536-560.
  • Kluge R, 1971. Contribution to the problem of drought-induced boron deficiency of agricultural crops. Arch. Acker. Pflanzenbau Bodenkd. 15: 749–754.
  • Kohl HC, Oertli JJ, 1961. Distribution of boron in leaves. Plant Physlol. 36: 420-424.
  • Li Q, Liu Y, Pan Z, Xie S, Peng S, 2016. Boron deficiency alters root growth and development and interacts with auxin metabolism by influencing the expression of auxin sythesis and transport genes. Biotechnology & Biotechnological Equipment. 40(4): 661-668.
  • Loomis WD, Durst RW, 1992. Chemistry and biology of boron. Biofactors 3: 229–239.
  • Marschner H, 1995. Mineral nutrition of higher plants. San Diego: Academic Press.
  • Maughan TL, 2013. Optimizing systems for cold-climate strawberry production. Utah StateUniversity, Utah, p 137 (All Graduate Theses and Dissertations. Paper 2034).
  • Maughan TL, Black B, Drost D, 2015. Critical temperature for sublethal cold injury of strawberry leaves. Plants, Soils and Climate Student Research, vol. 1.
  • May GM, Pritts MP, 1993. Phosphorus, Zinc, and Boron Influence Yield Components in ‘Earliglow’ Strawberry. Journal of the American Society for Horticultural Science. 118(1): 43-49.
  • Noppakoonwong R, Bell RW, Dell B, Loneragan JF, 1993. An effect of light on the B requirement for leaf blade elongation in black gram (Vigna mungo). Plant and Soil 155/156, 413–416.
  • Noppakoonwong RN, Rerkasem B, Bell RW, Dell B, Loneragan JF, 1997. Prognosis and diagnosis of boron deficiency in black gram (Vigna mungo L. Hepper) in the field by using plant analysis. In Boron in Soils and Plants. Proceedings. Eds R.W. Bell and B. Rerkasem. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Parr AJ, Loughman BC, 1983. Boron and membrane function in plants. In Metals and Micronutrients Uptake and Utilisation by Plants. Eds. D A Robb and WS Pierpoint. Academic Press New York .pp 87–107.
  • Peterson LA, Stang EJ, Krueger A, 1986. Growth and nutrient uptake of strawberry during first-year development in a matted-row cultural system. Adv. Strawberry Prod. 5: 11-17.
  • Pietiläinen P, 1984. Foliar nutrient content and 6-phosphogluconate dehydrogenase activity in vegetative buds of Scots pine on a growth disturbance area. Commun Instituti For Fenniae 123:1–18
  • Pinyerd CA, Odum JW, Long FL, Dane JH, 1984. Boron movement in a Norfolk loamy sand. Soil Science. 137, 428–433.
  • Purvis ER, Hanna WJ, 1940. Vegetable crops affected by boron deficiency in eastern Virginia. Va. Agric. Exp. Sta. Bull. 105.
  • Raisanen M, Repo T, Lehto T, 2009. Cold acclimation of Norway spruce roots and shoots after boron fertilization. Silva Fennica 43(2):223–233.
  • Renquist AR, Hughes, HG, 1985. Strawberry cultivar evaluation in Colorado: 1982-1984. Adv. Strawberry Prod. 4:53-55.
  • Riggs DJM, Righetti TL, Martin LW, 1987. The effect of boron application on boron partitioning in Tristar and Benton strawberries. Communications in Soil Science and Plant Analysis. 18:1453-1467.
  • Salas P, Litschmann T, Saskova H, 2014. Minimum temperatures above different surfaces. In: Rožnovský J, Litschmann T (eds) Strawberry cultivation. Mendel a bioklimatologie, Brno, p 9.
  • Singh R, Sharma RR, Tyagi SK, 2007. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae. 112: 215-220.
  • Sønsteby A, Heide OM, 2008. Temperature responses, flowering and fruit yield of the June-bearing strawberry cultivars Florence, Frida and Korona. Scientia Horticulturae. 119:49–54.
  • Şimşek, M, 2015. Organik ve Geleneksel Çilek Yetiştiriciliğinin Çevreye Etkilerinin Karşılaştırılması. Güneydoğu Anadolu Bölgesi Çevre Sorunları Sempozyumu ve Çalıştayı, 24-25 Mart 2015, Diyarbakır, 243-248.
  • Tewari RK, Kumar P, Sharma PN, 2010. Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiology. 30: 68–77.
  • TÜİK, 2017. Türkiye istatistik kurumu (TÜİK). http://www.tuik.gov.tr, Erişim Tarihi: 14 Kasım 2017.
  • Wang SY, Camp MJ, 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae. 85:183–199.
  • Warington K, 1933. The influence of length of day on the response of plants to boron. Annals of Botany. 47: 429–457.
  • Wimmer MA, Eichert T, 2013. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science. 203-204: 25-32.
  • Wójcik P, Lewandowski M, 2003. Effect of Calcium and Boron Sprays on Yield and Quality of ‘Elsanta’ Strawberry. Journal of Plant Nutrition. 26(3): 671-682.
  • Wojcik P, Wojcik M, Klamkowski K, 2008. Response of apple trees to boron fertilization under conditions of low soil boron availability. Scientia Horticulturae.116: 58–64.
  • Yermiyahu U, Keren R, Chen Y, 1995. Boron sorption by soil in the presence of composted organic matter. Soil Science Society of America Journal. 59: 405–409.

Prominent of Boron Element, Transportation Mechanism in Strawberry and Usage of Boron in Strawberry Cultivation

Year 2018, Volume: 8 Issue: 3, 45 - 51, 30.09.2018
https://doi.org/10.21597/jist.458567

Abstract

Review are including functions of the B element in plant; transportation from soil or leaves, transportation inside the plant and usage of boron especially in strawberry cultivation. The interaction of soil, plant and boron are tried to explaining with literature studies by doing in these content. The absorption of boron has been changed by species, because of disregarding of this situation, some scientific research are reached to contradictory and unexplainable results. Also, it is noticed some mistake about bor usage as empirical in practice. The review is comprised of especially strawberry and other fruit species. It is emphasized that more efficient results in soil applications than foliar applications due to transportation of boron by xylem in strawberry. Also, studies are noticed by showing the efficient of boron against different stress condition which being important problem in these days. Because of the very narrow range of optimum boron level, doses studies should be conducted carefully to avoid reaching toxic and deficient level.

References

  • Abdollahi M, Eshghi S, Tafazzoli E, Moosavi N, 2012. Effects of Paclobutrazol, Boric Acid and Zinc Sulfate on Vegetative and Reproductive Growth of Strawberry cv. Selva. Journal of Agricultural Science and Technology. 14: 357-363.
  • Bassil E, Hu H, Brown PH, 2004. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiology. 136:3383–3395.
  • Bell RW, 1997. Diagnosis and prediction of boron deficiency for plant production. Plant and Soil. 193: 149-168.
  • Blamey FPC, Edwards DG, Asher CJ, 1987. Nutritional Disorders of Sunflower. Department of Agriculture, University of Queensland, St Lucia, Queensland. 72 p.
  • Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Römheld V, 2002. Boron in plant biology. Plant Biology. 4: 205–223.
  • Brown PH, Hu H, 1996. Phloem Mobility of Boron is Species Dependent: Evidence for Phloem Mobility in Sorbitol-rich Species. Annals of Botany. 77: 497-505.
  • Cakmak I, Kurz H, Marschner H, 1995. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum. 95: 11–18.
  • Çakmak İ, Römheld V, 1997. Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil. 193:71-83.
  • Dell B, Huang L, 1997. Physiological response of plants to low boron. Plant and Soil. 193: 103-120.
  • Dickinson DB, 1978. Influence of borate and pentaerythritol concentrations ongermination and tube growth of Lilium longiflorum pollen. Journal of the American Society for Horticultural Science. 103: 413–416.
  • Dorfmüller W, 1941. Über den Einfluss des Bors auf den Wasserhaushalt der Leguminosen, Planta 32: 51–65.
  • Erdal I, Kepenek K, Kızılgöz I, 2005. Effect of Elemental Sulphur and Sulphur Containing Waste on The Iron Nutrition of strawberry Plants Grown in a Calcareous Soil. Biological Agriculture and Horticulture. 23 (3): 263-272
  • Esringü A, Turan M, Günes A, Eşitken A, Sambo P, 2011. Boron application improves on yield and chemical composition of strawberry. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. 61: 245-252.
  • Giampieri F, Alvarez-Suarez M, Mazzoni L, Romandini S, Bompadre S, Diamanti J, Capocasa F, Mezzetti B, Quiles JL, Ferreiro MS, Tulipani S, Battino M, 2013. ‘The potential impact of strawberry on human health’. Natural Product Research. 27: 448-455.
  • Gupta UC, 1980. Boron nutrition of crops. Advances in Agronomy. 31: 273–307.
  • Guttridge CG, Turnbull JM, 1975. Improving anther dehiscence and pollen germination in strawberry with boric acid and salts of divalent cations. Horticulture Research. 14: 73–79.
  • Gülsoy E., Yılmaz H, 2004. Van Ekolojik Koşullarında Farklı Örtü Tiplerinin Bazı Çilek Çeşitlerinin Adaptasyonu Üzerine Etkileri. Y. Y. Ü. Fen Bilimleri Enstitüsü Dergisi, 9 (1): 50-57.
  • Güneş A, Turan M, Kitir N, Tüfenkçi MS, Cimrin KM, Yıldırım E, Erçişli S, 2016. Effects of Bio-Bor Fertilizer Applications on Fruit Yield, Antioxidant Enzyme Activity and Freeze Injury of Strawberry. Erwerbs-Obstbau. 3: 177-184.
  • Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY, 2008. Boron deficiency decreases growth and photosynthesis, and increases starch and hexosesin leaves of citrus seedlings. Journal of Plant Physiology. 165: 1331–1341.
  • Haydon GF, 1981. Boron Toxicity of Strawberry. Commun. Communications in Soil Science and Plant Analysis. 12(11): 1085-1091.
  • Hu H, Brown PH, Labavitch JM, 1996. Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany. 47: 227–232.
  • Huang L, Ye Z, Bell RW, Dell B, 2005. Boron nutrition and chilling tolerance of warm climate crop species. Annals of Botany. 96:755–767.
  • John MK, Daubeny HA, McElroy FD, Garland M, 1976. Genotype influence on elemental composition of strawberry tissues. Journal of the American Society for Horticultural Science.101: 438-441.
  • Kacar B, Katkat AV, 2009. Bor. Bitki Besleme, s. 536-560.
  • Kluge R, 1971. Contribution to the problem of drought-induced boron deficiency of agricultural crops. Arch. Acker. Pflanzenbau Bodenkd. 15: 749–754.
  • Kohl HC, Oertli JJ, 1961. Distribution of boron in leaves. Plant Physlol. 36: 420-424.
  • Li Q, Liu Y, Pan Z, Xie S, Peng S, 2016. Boron deficiency alters root growth and development and interacts with auxin metabolism by influencing the expression of auxin sythesis and transport genes. Biotechnology & Biotechnological Equipment. 40(4): 661-668.
  • Loomis WD, Durst RW, 1992. Chemistry and biology of boron. Biofactors 3: 229–239.
  • Marschner H, 1995. Mineral nutrition of higher plants. San Diego: Academic Press.
  • Maughan TL, 2013. Optimizing systems for cold-climate strawberry production. Utah StateUniversity, Utah, p 137 (All Graduate Theses and Dissertations. Paper 2034).
  • Maughan TL, Black B, Drost D, 2015. Critical temperature for sublethal cold injury of strawberry leaves. Plants, Soils and Climate Student Research, vol. 1.
  • May GM, Pritts MP, 1993. Phosphorus, Zinc, and Boron Influence Yield Components in ‘Earliglow’ Strawberry. Journal of the American Society for Horticultural Science. 118(1): 43-49.
  • Noppakoonwong R, Bell RW, Dell B, Loneragan JF, 1993. An effect of light on the B requirement for leaf blade elongation in black gram (Vigna mungo). Plant and Soil 155/156, 413–416.
  • Noppakoonwong RN, Rerkasem B, Bell RW, Dell B, Loneragan JF, 1997. Prognosis and diagnosis of boron deficiency in black gram (Vigna mungo L. Hepper) in the field by using plant analysis. In Boron in Soils and Plants. Proceedings. Eds R.W. Bell and B. Rerkasem. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Parr AJ, Loughman BC, 1983. Boron and membrane function in plants. In Metals and Micronutrients Uptake and Utilisation by Plants. Eds. D A Robb and WS Pierpoint. Academic Press New York .pp 87–107.
  • Peterson LA, Stang EJ, Krueger A, 1986. Growth and nutrient uptake of strawberry during first-year development in a matted-row cultural system. Adv. Strawberry Prod. 5: 11-17.
  • Pietiläinen P, 1984. Foliar nutrient content and 6-phosphogluconate dehydrogenase activity in vegetative buds of Scots pine on a growth disturbance area. Commun Instituti For Fenniae 123:1–18
  • Pinyerd CA, Odum JW, Long FL, Dane JH, 1984. Boron movement in a Norfolk loamy sand. Soil Science. 137, 428–433.
  • Purvis ER, Hanna WJ, 1940. Vegetable crops affected by boron deficiency in eastern Virginia. Va. Agric. Exp. Sta. Bull. 105.
  • Raisanen M, Repo T, Lehto T, 2009. Cold acclimation of Norway spruce roots and shoots after boron fertilization. Silva Fennica 43(2):223–233.
  • Renquist AR, Hughes, HG, 1985. Strawberry cultivar evaluation in Colorado: 1982-1984. Adv. Strawberry Prod. 4:53-55.
  • Riggs DJM, Righetti TL, Martin LW, 1987. The effect of boron application on boron partitioning in Tristar and Benton strawberries. Communications in Soil Science and Plant Analysis. 18:1453-1467.
  • Salas P, Litschmann T, Saskova H, 2014. Minimum temperatures above different surfaces. In: Rožnovský J, Litschmann T (eds) Strawberry cultivation. Mendel a bioklimatologie, Brno, p 9.
  • Singh R, Sharma RR, Tyagi SK, 2007. Pre-harvest foliar application of calcium and boron influences physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae. 112: 215-220.
  • Sønsteby A, Heide OM, 2008. Temperature responses, flowering and fruit yield of the June-bearing strawberry cultivars Florence, Frida and Korona. Scientia Horticulturae. 119:49–54.
  • Şimşek, M, 2015. Organik ve Geleneksel Çilek Yetiştiriciliğinin Çevreye Etkilerinin Karşılaştırılması. Güneydoğu Anadolu Bölgesi Çevre Sorunları Sempozyumu ve Çalıştayı, 24-25 Mart 2015, Diyarbakır, 243-248.
  • Tewari RK, Kumar P, Sharma PN, 2010. Morphology and oxidative physiology of boron-deficient mulberry plants. Tree Physiology. 30: 68–77.
  • TÜİK, 2017. Türkiye istatistik kurumu (TÜİK). http://www.tuik.gov.tr, Erişim Tarihi: 14 Kasım 2017.
  • Wang SY, Camp MJ, 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae. 85:183–199.
  • Warington K, 1933. The influence of length of day on the response of plants to boron. Annals of Botany. 47: 429–457.
  • Wimmer MA, Eichert T, 2013. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Science. 203-204: 25-32.
  • Wójcik P, Lewandowski M, 2003. Effect of Calcium and Boron Sprays on Yield and Quality of ‘Elsanta’ Strawberry. Journal of Plant Nutrition. 26(3): 671-682.
  • Wojcik P, Wojcik M, Klamkowski K, 2008. Response of apple trees to boron fertilization under conditions of low soil boron availability. Scientia Horticulturae.116: 58–64.
  • Yermiyahu U, Keren R, Chen Y, 1995. Boron sorption by soil in the presence of composted organic matter. Soil Science Society of America Journal. 59: 405–409.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Bahçe Bitkileri / Horticulture
Authors

Mehmet Ali Sarıdaş 0000-0002-5180-1874

Sevgi Paydaş Kargı This is me 0000-0001-5781-8581

Publication Date September 30, 2018
Submission Date February 13, 2018
Acceptance Date May 25, 2018
Published in Issue Year 2018 Volume: 8 Issue: 3

Cite

APA Sarıdaş, M. A., & Kargı, S. P. (2018). Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı. Journal of the Institute of Science and Technology, 8(3), 45-51. https://doi.org/10.21597/jist.458567
AMA Sarıdaş MA, Kargı SP. Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı. J. Inst. Sci. and Tech. September 2018;8(3):45-51. doi:10.21597/jist.458567
Chicago Sarıdaş, Mehmet Ali, and Sevgi Paydaş Kargı. “Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, Ve Çilek Tarımında Bor Kullanımı”. Journal of the Institute of Science and Technology 8, no. 3 (September 2018): 45-51. https://doi.org/10.21597/jist.458567.
EndNote Sarıdaş MA, Kargı SP (September 1, 2018) Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı. Journal of the Institute of Science and Technology 8 3 45–51.
IEEE M. A. Sarıdaş and S. P. Kargı, “Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı”, J. Inst. Sci. and Tech., vol. 8, no. 3, pp. 45–51, 2018, doi: 10.21597/jist.458567.
ISNAD Sarıdaş, Mehmet Ali - Kargı, Sevgi Paydaş. “Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, Ve Çilek Tarımında Bor Kullanımı”. Journal of the Institute of Science and Technology 8/3 (September 2018), 45-51. https://doi.org/10.21597/jist.458567.
JAMA Sarıdaş MA, Kargı SP. Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı. J. Inst. Sci. and Tech. 2018;8:45–51.
MLA Sarıdaş, Mehmet Ali and Sevgi Paydaş Kargı. “Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, Ve Çilek Tarımında Bor Kullanımı”. Journal of the Institute of Science and Technology, vol. 8, no. 3, 2018, pp. 45-51, doi:10.21597/jist.458567.
Vancouver Sarıdaş MA, Kargı SP. Çileklerde Bor Elementinin Önemi, Taşınma Mekanizması, ve Çilek Tarımında Bor Kullanımı. J. Inst. Sci. and Tech. 2018;8(3):45-51.