Research Article
BibTex RIS Cite

Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini

Year 2019, Volume: 9 Issue: 1, 48 - 56, 01.03.2019
https://doi.org/10.21597/jist.451256

Abstract

Pestisitler tarımsal üretimin kontrolü gibi pek çok alanda yaygın olarak kullanılmaktadır. Bu maddeler tarımsal ürünlerin artmasına katkıda bulunur ancak toksik özelliklerinden dolayı canlılar üzerinde olumsuz etkilere sebep olmaktadır. Bu nedenle pestisitlerin tayin edilmesi, hem insanlar üzerinde artan toksik etkilerinden hem de kullanımının kontrol altına alınmasından dolayı büyük bir öneme sahiptir. Bu çalışmada, çevre sularında oldukça seçici, hassas, hızlı ve gerçek zamanlı bir ölçüm ile klorpirifos tayini için moleküler baskılama tekniği kullanılarak yeni bir kuvars kristal mikroterazi (QCM) sensör hazırlanmış olup N-metakriloil-(L)-triptofan metil ester (MATrp) uygun fonksiyonel monomer olarak seçilmiştir. Daha sonraki aşamada bu monomer kompleksi etilen glikol dimetakrilat (EGDMA) ile polimerleştirilmiştir. Polimerleştirilmiş klorpirifos baskılı nanofilmler QCM sensör çiplerinin altın yüzeylerine bağlanarak temas açısı ölçümleri ve atomik kuvvet mikroskobu (AFM) ile karakterizasyonları yapılmıştır. Kalınlık ölçümleri ve AFM görüntüleri, nanofilmlerin homojen ve tek tabakalı olduğunu göstermiştir. Baskılanmış nanofilmlerin baskılanmamış nanofilmlere oranla daha fazla hedef moleküle duyarlılık gösterdiği belirlenmiştir. Langmuir adsorpsiyon modeli, bu afinite sistemi için en uygun model olarak belirlenmiştir. Klorpirifos baskılanmış nanofilmlerin seçiciliğini göstermek için aynı derişimdeki klorpirifos, diazinon ve paration çözeltilerinin yarışmalı adsorpsiyonu araştırılmıştır. Sonuç olarak, QCM sensörlerin hızlı yanıt, kullanım kolaylığı, yüksek hassasiyet ve seçicilik ve gerçek zamanlı ölçüm alınabilme gibi özelliklerinden dolayı pestisit analizleri için alternatif bir yöntem olarak kullanılma potansiyeline sahip olduğu belirlenmiştir.

References

  • Bakirci GT, Hisil Y, 2011. Fast and simple extraction of pesticide residues in selected fruits and vegetables using tetrafluoroethane and toluene followed by ultrahigh-performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 135: 1901–1913.
  • Bicker W, Lammerhofer M, Genser D, Kiss H, Lindner W, 2005. A case study of acute human chlorpyrifos poisoning: novel aspects on metabolism and toxicokinetics derived from liquid chromatography-tandem mass spectrometry analysis of urine samples. Toxicology Letters, 159: 235-251.
  • Blasco C, Font G, Picó Y, 2006. Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control, 17: 841–846.
  • Chen C, Qian Y, Chen Q, Tao C, Li C, Li Y, 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China Food Control, 22: 1114–1120.
  • Chen YC, Brazier JJ, Yan MD, Bargo PR, Prahl SA, 2004. Flourescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B: Chemical, 102: 107-116.
  • Çakır O, Bakhshpour M, Yılmaz F, Baysal Z, 2018a. Pestisit tayini için nanopartiküllerle duyarlılığı arttırılmış moleküler baskılama temelli yüzey plazmon rezonans sensörlerin hazırlanması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3): 219-226.
  • Cakir O, Yılmaz F, Baysal Z, Denizli A, 2018b. Preparation of a new quartz crystal microbalance sensor based on molecularly imprinted nanofilms for amitrole detection. Biointerface Research in Applied Chemistry, 8: 3435-3440.
  • Du D, Chen S, Cai J, Tao Y, Tu H, Zhang A, 2008. Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochimica Acta, 53: 6589–6595.
  • Erbahar DD, Gürol I, Gümüs G, Musluoglu E, Öztürk ZZ, Ahsen V, Harbeck M, 2012. Pesticide sensing in water with phthalocyanine based QCM sensors. Sensors and Actuators B, 173: 562–568.
  • Gabrieli B, Magali K, Lucila R, Martha BA, Renato Z, Osmar DP, 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161: 40-47.
  • Gültekin A, Ersöz A, Denizli A, Say R, 2012. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors and Actuators B: Chemical, 162: 153-158.
  • Jamal HM, Ahmad AS, 2016. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Environmental Sciences & Ecology, 164: 643-648.
  • Kouzayha A, Rabaa AR, Iskandarani M, Beh D, Budzinski H, Jaber F, 2012. Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry. American Journal of Analytical Chemistry, 3: 257-265.
  • Luzardo OP, Almeida-González M, Ruiz-Suárez N, Zumbado M, Henríquez-Hernández LA, Meilán MJ, Camacho M, Boada LD, 2015. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Science and Justice, 55: 307–315.
  • Mao YA, Wei WZ, Zhang SF, Zeng GM, 2002. Monitoring, and estimation of kinetic data, by piezoelectric impedance analysis, of the binding of the anticancer drug mitoxantrone to surface-immobilized DNA. Analytical and Bioanalytical Chemistry, 373: 215–221.
  • Özgür E, Yilmaz E, Sener G, Uzun L, Say R, Denizli A, 2013. A new molecular imprinting-based mass-sensitive sensor for real-time detection of 17β-estradiol from aqueous solution. Environmental Progress & Sustainable Energy, 32: 1164–1169.
  • Özkütük EB, Diltemiz SE, Özalp E, Gedikbey T, Ersöz A, 2013. Paraoxon imprinted biopolymer based QCM sensor. Materials Chemistry and Physics, 139: 107-112.
  • Say R, Gultekin A, Ozcan AA, Denizli A, Ersoz A, 2009. Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2-deoxyguanosine determination. Analytica Chimica Acta, 640: 82–86.
  • Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A, 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241: 446-454.
  • Saylan Y, Üzek R, Uzun L, Denizli A, 2014. Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 25: 881-894.
  • Sener G, Ozgur E, Yilmaz E, Uzun L, Say R, Denizli A, 2010. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosensors and Bioelectronics, 26: 815–821.
  • Singh AK, Seth, PK, 1989. Degradation of malathion by microorganisms isolated from industrial effluents. Bulletin of Environmental Contamination and Toxicology, 43: 28-35.
  • Svedhem S, Dahlborg D, Ekeroth J, Kelly J, Hook F, Gold J, 2003. In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir, 19: 6730–6736.
  • Yazgan MS, 1997. Türkiye′de pestisit kirliliği. Türkiye′de Çevre Kirlenmesi Öncelikleri Sempozyumu II, 571-577. Gebze-Kocaeli.

Chlorpyrifos Detection with Molecular Imprinted Based Quartz Crystal Microbalance (QCM) Sensors

Year 2019, Volume: 9 Issue: 1, 48 - 56, 01.03.2019
https://doi.org/10.21597/jist.451256

Abstract

Pesticides have been widely used in many fields such as agricultural products control. Although these substances contribute to increasing of agricultural products, they have also many negative effects on the health due to contamination. Thus, it appears that pesticides have great effects on the management and increase the toxicity effects on humans. In this study, we were prepared to a new quartz crystal microbalance (QCM) sensor by using molecular imprinting technique for highly sensitive and selective, fast and realtime detection of chlorpyrifos in environmental waters. N-methacryloyl-(L)-tryptophan methyl ester (MATrp) was selected as a proper functional monomer and this monomer complex was polymerized with ethylene glycol dimethacrylate (EGDMA). Then, chlorpyrifos imprinted nanofilms were characterized by atomic force microscopy (AFM) and contact angle measurements binding to the gold surfaces of the QCM sensor chips. The thickness measurements and AFM observations indicated that the nanofilms were almost homogeneous and monolayer. The imprinted nanofilms were found to show more sensitivity towards the target molecule than the non-imprinted nanofilms. Langmuir adsorption model was determined as the most suitable model for this affinity system. In order to show the selectivity of the chlorpyrifos imprinted nanofilms, competitive adsorption of chlorpyrifos, diazinon and parathion solutions at the same concentration was investigated. As a result of, QCM sensors determined to have a potential to be used as an alternative method for pesticides analysis due to such properties fast response, easy-to-use properties, precision, selective and real-time measurement capability.

References

  • Bakirci GT, Hisil Y, 2011. Fast and simple extraction of pesticide residues in selected fruits and vegetables using tetrafluoroethane and toluene followed by ultrahigh-performance liquid chromatography/tandem mass spectrometry. Food Chemistry, 135: 1901–1913.
  • Bicker W, Lammerhofer M, Genser D, Kiss H, Lindner W, 2005. A case study of acute human chlorpyrifos poisoning: novel aspects on metabolism and toxicokinetics derived from liquid chromatography-tandem mass spectrometry analysis of urine samples. Toxicology Letters, 159: 235-251.
  • Blasco C, Font G, Picó Y, 2006. Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control, 17: 841–846.
  • Chen C, Qian Y, Chen Q, Tao C, Li C, Li Y, 2011. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China Food Control, 22: 1114–1120.
  • Chen YC, Brazier JJ, Yan MD, Bargo PR, Prahl SA, 2004. Flourescence-based optical sensor design for molecularly imprinted polymers. Sensors and Actuators B: Chemical, 102: 107-116.
  • Çakır O, Bakhshpour M, Yılmaz F, Baysal Z, 2018a. Pestisit tayini için nanopartiküllerle duyarlılığı arttırılmış moleküler baskılama temelli yüzey plazmon rezonans sensörlerin hazırlanması. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3): 219-226.
  • Cakir O, Yılmaz F, Baysal Z, Denizli A, 2018b. Preparation of a new quartz crystal microbalance sensor based on molecularly imprinted nanofilms for amitrole detection. Biointerface Research in Applied Chemistry, 8: 3435-3440.
  • Du D, Chen S, Cai J, Tao Y, Tu H, Zhang A, 2008. Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochimica Acta, 53: 6589–6595.
  • Erbahar DD, Gürol I, Gümüs G, Musluoglu E, Öztürk ZZ, Ahsen V, Harbeck M, 2012. Pesticide sensing in water with phthalocyanine based QCM sensors. Sensors and Actuators B, 173: 562–568.
  • Gabrieli B, Magali K, Lucila R, Martha BA, Renato Z, Osmar DP, 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta, 161: 40-47.
  • Gültekin A, Ersöz A, Denizli A, Say R, 2012. Preparation of new molecularly imprinted nanosensor for cholic acid determination. Sensors and Actuators B: Chemical, 162: 153-158.
  • Jamal HM, Ahmad AS, 2016. Organochlorine pesticide residues in human milk and estimated daily intake (EDI) for the infants from eastern region of Saudi Arabia. Environmental Sciences & Ecology, 164: 643-648.
  • Kouzayha A, Rabaa AR, Iskandarani M, Beh D, Budzinski H, Jaber F, 2012. Multiresidue method for determination of 67 pesticides in water samples using solid-phase extraction with centrifugation and gas chromatography-Mass spectrometry. American Journal of Analytical Chemistry, 3: 257-265.
  • Luzardo OP, Almeida-González M, Ruiz-Suárez N, Zumbado M, Henríquez-Hernández LA, Meilán MJ, Camacho M, Boada LD, 2015. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Science and Justice, 55: 307–315.
  • Mao YA, Wei WZ, Zhang SF, Zeng GM, 2002. Monitoring, and estimation of kinetic data, by piezoelectric impedance analysis, of the binding of the anticancer drug mitoxantrone to surface-immobilized DNA. Analytical and Bioanalytical Chemistry, 373: 215–221.
  • Özgür E, Yilmaz E, Sener G, Uzun L, Say R, Denizli A, 2013. A new molecular imprinting-based mass-sensitive sensor for real-time detection of 17β-estradiol from aqueous solution. Environmental Progress & Sustainable Energy, 32: 1164–1169.
  • Özkütük EB, Diltemiz SE, Özalp E, Gedikbey T, Ersöz A, 2013. Paraoxon imprinted biopolymer based QCM sensor. Materials Chemistry and Physics, 139: 107-112.
  • Say R, Gultekin A, Ozcan AA, Denizli A, Ersoz A, 2009. Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2-deoxyguanosine determination. Analytica Chimica Acta, 640: 82–86.
  • Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A, 2017. Development of surface plasmon resonance sensors based on molecularly imprinted nanofilms for sensitive and selective detection of pesticides. Sensors and Actuators B: Chemical, 241: 446-454.
  • Saylan Y, Üzek R, Uzun L, Denizli A, 2014. Surface imprinting approach for preparing specific adsorbent for IgG separation. Journal of Biomaterials Science, Polymer Edition, 25: 881-894.
  • Sener G, Ozgur E, Yilmaz E, Uzun L, Say R, Denizli A, 2010. Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosensors and Bioelectronics, 26: 815–821.
  • Singh AK, Seth, PK, 1989. Degradation of malathion by microorganisms isolated from industrial effluents. Bulletin of Environmental Contamination and Toxicology, 43: 28-35.
  • Svedhem S, Dahlborg D, Ekeroth J, Kelly J, Hook F, Gold J, 2003. In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir, 19: 6730–6736.
  • Yazgan MS, 1997. Türkiye′de pestisit kirliliği. Türkiye′de Çevre Kirlenmesi Öncelikleri Sempozyumu II, 571-577. Gebze-Kocaeli.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Oğuz Çakır 0000-0002-8006-2054

Publication Date March 1, 2019
Submission Date August 6, 2018
Acceptance Date September 19, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Çakır, O. (2019). Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini. Journal of the Institute of Science and Technology, 9(1), 48-56. https://doi.org/10.21597/jist.451256
AMA Çakır O. Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini. J. Inst. Sci. and Tech. March 2019;9(1):48-56. doi:10.21597/jist.451256
Chicago Çakır, Oğuz. “Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler Ile Klorpirifos Tayini”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 48-56. https://doi.org/10.21597/jist.451256.
EndNote Çakır O (March 1, 2019) Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini. Journal of the Institute of Science and Technology 9 1 48–56.
IEEE O. Çakır, “Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 48–56, 2019, doi: 10.21597/jist.451256.
ISNAD Çakır, Oğuz. “Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler Ile Klorpirifos Tayini”. Journal of the Institute of Science and Technology 9/1 (March 2019), 48-56. https://doi.org/10.21597/jist.451256.
JAMA Çakır O. Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini. J. Inst. Sci. and Tech. 2019;9:48–56.
MLA Çakır, Oğuz. “Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler Ile Klorpirifos Tayini”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 48-56, doi:10.21597/jist.451256.
Vancouver Çakır O. Moleküler Baskılama Temelli Kuvars Kristal Mikroterazi (QCM) Sensörler ile Klorpirifos Tayini. J. Inst. Sci. and Tech. 2019;9(1):48-56.