Research Article
BibTex RIS Cite

(E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi

Year 2019, Volume: 9 Issue: 1, 407 - 414, 01.03.2019
https://doi.org/10.21597/jist.457176

Abstract

Bu
çalışmada, (E)-2-((fenilimino)metil)fenol molekülünün 3D geometrisi ve
elektronik yapısı hakkında bilgi edinmek için kuantum kimyasal hesaplamaları
B3LYP/6-31++G(d,p) seviyesinde Yoğunluk Fonksiyonel Teorisi kullanılarak taban
durumunda hesaplandı. Optimize edilmiş moleküler yapının tek bağ etrafında
dönerek toplam enerjinin taranmasıyla konformasyonları bulundu. En çok ve en az
kararlı konformasyonların 3 boyutlu elektrostatik potansiyel haritaları
çıkartıldı. Bu konformasyonel yapıların en yüksek dolu moleküler orbital (HOMO),
en düşük boş moleküler orbitallerin (LUMO) enerjileri, elektronik ve moleküler
özellikleri hesaplandı. Ek olarak, lineer olmayan optik özellikleri (NLO)
incelendi.

References

  • Aggarwal MD, Stephens J, Batra AK, Lal RB, 2003. Bulk Growth and Characterization of Semiorganic Nonlinear Optical Materials. Journal of Optoelectronics and Advanced Materials, 5(3): 555‐562.
  • Becke AD, 1988. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38(6): 3098-3100.
  • Cramer CJ, 2004. Essentials of Computational Chemistry. John Wiley and Sons, pp. 596, London.
  • Denningto R, Keith T, Millam J, 2009. GaussView, Version 5. Semichem Inc., Shawnee Mission KS.
  • Fleming I, 1976. Frontier Orbitals and Organic Chemical Reactions. Wiley Interscience, pp. 250, New York.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, 2009. Gaussian Inc., Wallingford, CT.
  • Fukui K, 1982. Role of Frontier Orbitals in Chemical Reactions. Science, 218(4574): 747-754.
  • Govindarajan M, Periandy S, Carthigayen K, 2012. FT-IR and FT-Raman Spectra, Thermo Dynamical Behavior, HOMO and LUMO, UV, NLO Properties, Computed Frequency Estimation Analysis and Electronic Structure Calculations on α-Bromotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97: 411-422.
  • Guo P, Ma R, Guo L, Yang L, Liu J, Zhang X, Pan X, Dai S, 2010. Theoretical Study on The Electronic Absorption Spectra and Molecular Orbitals of Ten Novel Ruthenium Sensitizers Derived From N3 And K8. Journal of Molecular Graphics and Modelling, 29(3): 498–505.
  • Isin DO, Karakus N, 2015. Quantum Chemical Study on The İnhibition Efficiencies of Some Sym-Triazines As İnhibitors for Mild Steel in Acidic Medium. Journal of the Taiwan Institute of Chemical Engineers, 50: 306-313.
  • Lee C, Yang W, Parr RG, 1998. Development of The Colle-Salvetti Correlation-Energy Formula into A Functional of The Electron Density. Physical Review B, 37(2): 785-789.
  • Leszczynski J, 2006. Non-Linear Optical Properties of Matter. Springer, Dordrecht, pp. 676, The Netherlands.
  • Levine IN, 2000. Many-Electron Atoms. Quantum chemistry, pp. 739, Prentice-Hall Inc., New Jersey.
  • Lewis DFV, Ioannides C, Parke DV, 1994. Interaction of A Series of Nitriles with The Alcohol-Inducible Isoform of P450: Computer Analysis of Structureactivity Relationships. Xenobiotica, 24: 401-408.
  • Macho V, Králik M, Hudec J, Cingelova J, 2004. One Stage Preparation of Schiff' s Bases from Nitroarenes Aldehydes and Carbon Monoxide at Presence of Water. Journal of Molecular Catalysis A: Chemical, 209(1-2): 69–73.
  • Pearson RG, 1989. Absolute Electronegativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54: 1423–1430.
  • Sebastian S, Sylvestre S, Sundaraganesan N, Amalanathan M, Ayyapan S, Oudayakumar K, Karthikeyan B, 2013. Vibrational Spectra, Molecular Structure, Natural Bond Orbital, First Order Hyperpolarizability, TD-DFT and Thermodynamic Analysis of 4-Amino-3-Hydroxy-1-Naphthalenesulfonic Acid by DFT Approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107: 167–178.
  • Turhan Irak Z, Gumus S, 2017. Heterotricyclic Compounds via Click Reaction: A Computational Study. Noble International Journal of Scientific Research, 01 (07): 80-89.
  • Zhou X, Cui J, Li ZH, Wang G, Liu Z, Zhou M, 2013. Carbonyl Bonding on Oxophilic Metal Centers: Infrared Photodissociation Spectroscopy of Mononuclear and Dinuclear Titanium Carbonyl Cation Complexes. The Journal of Physical Chemistry A, 117(7): 1514-1521.
  • Zhou Z, Parr RG, 1990. Activation Hardness:New İndex for Describing The Orientation of Electrophilic Aromatic Substitution. Journal of the American Chemical Society, 112: 5720-5724.
  • Zyss J, 1994. Molecular Non linear Optics: Materials, Physics and Devices Academic Press. New York.

Theoretical Investigation of (E)-2-((Phenylimino)methyl)phenol Molecules

Year 2019, Volume: 9 Issue: 1, 407 - 414, 01.03.2019
https://doi.org/10.21597/jist.457176

Abstract

In this work, quantum chemical calculations were
computed in the base state using Density Functional Theory at the level of
B3LYP/6-31++G(d,p) to obtain information about the 3D geometry and electronic
structure of the (E)-2- ((phenylimino)methyl)phenol molecule. Conformations
were found by scanning the total energy by rotating around the single bond of
the optimized molecular structure. Three-dimensional electrostatic potential
maps of the most and least stable conformation were deduced. These
conformational structures have calculated the highest filled molecular orbital
(HOMO), lowest empty molecular orbitals (LUMO) energies, electronic and
molecular properties. In addition, nonlinear optical properties (NLO) were
investigated.

References

  • Aggarwal MD, Stephens J, Batra AK, Lal RB, 2003. Bulk Growth and Characterization of Semiorganic Nonlinear Optical Materials. Journal of Optoelectronics and Advanced Materials, 5(3): 555‐562.
  • Becke AD, 1988. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38(6): 3098-3100.
  • Cramer CJ, 2004. Essentials of Computational Chemistry. John Wiley and Sons, pp. 596, London.
  • Denningto R, Keith T, Millam J, 2009. GaussView, Version 5. Semichem Inc., Shawnee Mission KS.
  • Fleming I, 1976. Frontier Orbitals and Organic Chemical Reactions. Wiley Interscience, pp. 250, New York.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, 2009. Gaussian Inc., Wallingford, CT.
  • Fukui K, 1982. Role of Frontier Orbitals in Chemical Reactions. Science, 218(4574): 747-754.
  • Govindarajan M, Periandy S, Carthigayen K, 2012. FT-IR and FT-Raman Spectra, Thermo Dynamical Behavior, HOMO and LUMO, UV, NLO Properties, Computed Frequency Estimation Analysis and Electronic Structure Calculations on α-Bromotoluene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97: 411-422.
  • Guo P, Ma R, Guo L, Yang L, Liu J, Zhang X, Pan X, Dai S, 2010. Theoretical Study on The Electronic Absorption Spectra and Molecular Orbitals of Ten Novel Ruthenium Sensitizers Derived From N3 And K8. Journal of Molecular Graphics and Modelling, 29(3): 498–505.
  • Isin DO, Karakus N, 2015. Quantum Chemical Study on The İnhibition Efficiencies of Some Sym-Triazines As İnhibitors for Mild Steel in Acidic Medium. Journal of the Taiwan Institute of Chemical Engineers, 50: 306-313.
  • Lee C, Yang W, Parr RG, 1998. Development of The Colle-Salvetti Correlation-Energy Formula into A Functional of The Electron Density. Physical Review B, 37(2): 785-789.
  • Leszczynski J, 2006. Non-Linear Optical Properties of Matter. Springer, Dordrecht, pp. 676, The Netherlands.
  • Levine IN, 2000. Many-Electron Atoms. Quantum chemistry, pp. 739, Prentice-Hall Inc., New Jersey.
  • Lewis DFV, Ioannides C, Parke DV, 1994. Interaction of A Series of Nitriles with The Alcohol-Inducible Isoform of P450: Computer Analysis of Structureactivity Relationships. Xenobiotica, 24: 401-408.
  • Macho V, Králik M, Hudec J, Cingelova J, 2004. One Stage Preparation of Schiff' s Bases from Nitroarenes Aldehydes and Carbon Monoxide at Presence of Water. Journal of Molecular Catalysis A: Chemical, 209(1-2): 69–73.
  • Pearson RG, 1989. Absolute Electronegativity and Hardness: Applications to Organic Chemistry. Journal of Organic Chemistry, 54: 1423–1430.
  • Sebastian S, Sylvestre S, Sundaraganesan N, Amalanathan M, Ayyapan S, Oudayakumar K, Karthikeyan B, 2013. Vibrational Spectra, Molecular Structure, Natural Bond Orbital, First Order Hyperpolarizability, TD-DFT and Thermodynamic Analysis of 4-Amino-3-Hydroxy-1-Naphthalenesulfonic Acid by DFT Approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 107: 167–178.
  • Turhan Irak Z, Gumus S, 2017. Heterotricyclic Compounds via Click Reaction: A Computational Study. Noble International Journal of Scientific Research, 01 (07): 80-89.
  • Zhou X, Cui J, Li ZH, Wang G, Liu Z, Zhou M, 2013. Carbonyl Bonding on Oxophilic Metal Centers: Infrared Photodissociation Spectroscopy of Mononuclear and Dinuclear Titanium Carbonyl Cation Complexes. The Journal of Physical Chemistry A, 117(7): 1514-1521.
  • Zhou Z, Parr RG, 1990. Activation Hardness:New İndex for Describing The Orientation of Electrophilic Aromatic Substitution. Journal of the American Chemical Society, 112: 5720-5724.
  • Zyss J, 1994. Molecular Non linear Optics: Materials, Physics and Devices Academic Press. New York.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Erhan Öztürk This is me 0000-0003-4006-2428

Zeynep Turhan Irak 0000-0002-3587-2576

Selçuk Gümüş 0000-0002-8628-8943

Publication Date March 1, 2019
Submission Date September 4, 2018
Acceptance Date October 26, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Öztürk, E., Turhan Irak, Z., & Gümüş, S. (2019). (E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology, 9(1), 407-414. https://doi.org/10.21597/jist.457176
AMA Öztürk E, Turhan Irak Z, Gümüş S. (E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. March 2019;9(1):407-414. doi:10.21597/jist.457176
Chicago Öztürk, Erhan, Zeynep Turhan Irak, and Selçuk Gümüş. “(E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 407-14. https://doi.org/10.21597/jist.457176.
EndNote Öztürk E, Turhan Irak Z, Gümüş S (March 1, 2019) (E)-2-(Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology 9 1 407–414.
IEEE E. Öztürk, Z. Turhan Irak, and S. Gümüş, “(E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 407–414, 2019, doi: 10.21597/jist.457176.
ISNAD Öztürk, Erhan et al. “(E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9/1 (March 2019), 407-414. https://doi.org/10.21597/jist.457176.
JAMA Öztürk E, Turhan Irak Z, Gümüş S. (E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9:407–414.
MLA Öztürk, Erhan et al. “(E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 407-14, doi:10.21597/jist.457176.
Vancouver Öztürk E, Turhan Irak Z, Gümüş S. (E)-2-((Fenilimino)metil) Fenol Molekülünün Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9(1):407-14.