Research Article
BibTex RIS Cite

Theoretical Study on The Investigation of Antioxidant Properties of Some 4-Benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one Derivatives

Year 2019, Volume: 9 Issue: 1, 512 - 521, 01.03.2019
https://doi.org/10.21597/jist.481990

Abstract

In this study, the antioxidant properties of
some experimentally determined
4-benzylideneamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives of
antioxidant properties were compared by density functional theory method.
Quantum chemical calculations based on density functional theory (DFT) were
employed to study the relationship between
4-benzylideneamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives (for 2a and
2g) having the highest and least antioxidant activity in experimental results.
The solvation effects on
the antioxidant activity were taken into account by using the conductor-like
polarisable continuum model with different dielectric constants (ϵ= 2.25, C6H6;
ϵ = 78.39, H2O). The three antioxidant action mechanisms, hydrogen
atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and
sequential protonloss electron transfer (SPLET) were elucidated. The reaction
enthalpies related to the steps in these mechanisms were computed in gas phase
and solvents, the compatibility of the calculated results with experimental
values ​​is discussed. The results showed that SPLET was the most favourable
mechanism for describing the antioxidant activity of 2a and 2g in the aqueous
phase, SPLET represented the most thermodynamically plausible reaction pathway.
Calculations performed
by using DFT method at the rB3LYP/6-311++G (2d,2p) level of theory for neutral
molecules and anions in the gas and solvation phase, for radicals and cations,
uB3LYP/ 6-311++G (2d,2p) basis set has been used.

References

  • Abdel Aziz AA, 2013. A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143: 663-669.
  • Aktaş Yokuş Ö, Yüksek H, Manap S, Aytemiz F, Alkan M, Beytur M, Gürsoy Kol Ö, 2017. In-vitro biological activity of some new 1,2,4-triazole derivatives with their potentiometric titrations. Bulgarian Chemical Communications, 49 (1): 98-106.
  • Alafeefy AM, Bakht MA, Ganaie MA, Ansarie MN, El-Sayed NN, Awaad AS, 2015. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorganic & medicinal chemistry letters, 25 (2): 179-183.
  • Al Zoubi W, Al Mohanna ND, 2014. Membrane sensors based on Schiff bases as chelating ionophores-a review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132: 854-870.
  • Ambike V, Adsule S, Ahmed F, Wang Z, Afrasiabi Z, Sinn E, Sarkar F, Padhye S, 2007 Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells. Journal of Inorganic Biochemistry, 101: 55-59.
  • Amer S, El-Wakiel N, El-Ghamry H, 2013. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives. Journal of Molecular Structure, 1049: 326-335.
  • Andres S, Guarin P, Dufresne S, Tsang D, Sylla A, Skene WG, 2007 Photophysical, electrochemical, and crystallographic investigation of conjugated fluoreno azomethines and their precursors. Journal of Materials Chemistry, 17: 2801-2811.
  • Azam F, Singh S, Khokhra SL, Prakash O, 2007 Synthesis of Schiff bases of naphtha [1,2-d] thiazol-2-amine and metal complexes of 2-(2'-hydroxy) benzylideneaminonaphthothiazole as potential antimicrobial agents. Journal of Zhejiang University Science B, 8 (6): 446-452.
  • Bahçeci Ş, Yıldırım N, Manap S, Beytur M, Yüksek H, 2016. Synthesis, Characterization and Antioxidant Properties of New 3-Alkyl(Aryl)-4-(3-hydroxy-4-methoxy-benzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones. Rasayan Journal of Chemistry. 9 (3) : 494-501.
  • Bartmess JE, 1994. Thermodynamics of the Electron and the Proton. The Journal of Physical Chemistry, 98(25): 6420-6424.
  • Becke AD, 1993. Density Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98(7): 5648-5652.
  • Bors W, Heller W, Michel C, Saran M, 1990. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in Enzymology. 186. 343-355.
  • Bizarr, MM, Cabral B JC, de Santos R MB, Simões JAM, 1999. Substituent Effects on the OH Bond Dissociation Enthalpies in Phenolic Compounds: Agreements and Controversies. Pure and Applied Chemistry, 71(8): 1609-1610.
  • Cai W, Chen Y, Xie L, Zhang H, Hou C, 2014. Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues. European Food Research and Technology, 238 (1): 121-128
  • Cances E, Mennucci B, Tomasi J, 1997. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. The Journal of Chemical Physics, 107(8): 3032-3041.
  • Cimerman Z, Mennucci B, Antolić, J, 1999. Fluorescence characteristics of Schiff bases derived from amino- and aminoalkylpyridines. Spectroscopy Letters, 32: 181-196.
  • Di Bella S, Oliveri IP, Colombo A, Dragonetti C, Righetto S, Roberto D, 2012. An unprecedented switching of the second-order nonlinear optical response in aggregate bis(salicylaldiminato)zinc(II) Schiff-base complexes. Dalton Transactions. 41: 7013-7016.
  • Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N, 2011. Solvent Effects on the Antioxidant Activity of 3, 4-dihydroxyphenylpyruvic acid: DFT and TD-DFT Studies. Computational and Theoretical Chemistry, 966(1-3): 232-243.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, 2009. Gaussian Inc., Wallingford CT.
  • Hosnya NM, Hussiena MA, Radwana FM, Nawar N, 2014. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone. Spectrochimica Acta Part A, 132: 121–129.
  • Ismail TMA, 2005. Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. Journal of Molecular Structure, 58 (2): 141-151.
  • Kabanda MM, Tran VT, Seema KM, Serobatse KR, Tsiepe TJ, Tran QT, Ebenso EE, 2015. Conformational, Electronic and Antioxidant Properties of Lucidone, Linderone and Methyllinderone: DFT, QTAIM and NBO Studies. Molecular Physics, 113(7): 683-697.
  • Khanye SD, Gutb J, Rosenthal PJ, Chibale K, Smith GS, 2011. Ferrocenylthiosemicarbazones conjugated to a poly (propyleneimine) dendrimer scaffold: Synthesis and in vitro antimalarial activity. Journal of Organometallic Chemistry, 696 (21): 3296-3300.
  • Klein E, Rimarcik J, Lukes V, 2009. DFT/B3LYP Study of the O–H Bond Dissociation Enthalpies and Proton Affinities of Para-and Meta-Substituted Phenols in Water and Benzene. Acta Chim. Slovaca: 2(2): 37-51.
  • Kumar S, Dhar DN, Saxena PM, 2009. Applications of metal complexes of Schiff bases-A review. Molecular Physics, 68 (3): 181-187.
  • Leopoldini M, Russo N, Toscano M, 2006. Gas and Liquid Phase Acidity of Natural Antioxidants. Journal of Agricultural and Food Chemistry, 54(8): 3078-3085.
  • Marković Z, Jeremić S, Marković JD, Pirković MS, Amić D, 2016. Influence of Structural Characteristics of Substituents on the Antioxidant Activity of Some Anthraquinone Derivatives. Computational and Theoretical Chemistry, 1077: 25-31.
  • Mc Auliffe CA, Parish RV, Abu-El-Wafa SM, Issa RM, 1986. High-valent manganese complexes of tetradentate schiff base ligands. ESR-active and ESR-silent dimeric species. Inorganica Chimica Acta, 115: 91-94.
  • Mejeha MI, Nwandu MC, Okeoma KB, Nnanna LA, Chidiebere MA, Eze FC, Oguzie EE, 2012. Corrosion inhibition and adsorption behaviour of leaf extracts of Aspilia Africana on aluminium alloy AA 3003 in hydrochloric acid, Journal of Materials Science, 47: 1517-1524.
  • Notario R, 2000. Medium Effects on the Ionization of the Acidic Sites of Bifunctional Organic Molecules: The Case of 4-hydroxybenzoic acid. Journal Of Molecular Structure, 556(1-3): 245-252.
  • Parker VD, 1992. Homolytic Bond (HA) Dissociation Free Energies in Solution. Applications of the Standard Potential of the (H+/H. bul.) Couple. Journal of the American Chemical Society, 114(19): 7458-7462.
  • Rimarčík J, Lukeš V, Klein E, Ilčin M, 2010. Study of The Solvent Effect on The Enthalpies of Homolytic and Heterolytic N–H Bond Cleavage in P-phenylenediamine and Tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem, 952(1-3): 25-30.
  • Sadasivam K, Kumaresan R, 2011. A Comparative DFT Study on the Antioxidant Activity of Apigenin and Scutellarein Flavonoid Compounds. Molecular Physics, 109(6): 839-852.
  • Szeląg M, Mikulski, D, Molski M, 2012. Quantum-Chemical İnvestigation of the Structure and the Antioxidant Properties of Α-Lipoic Acid and İts Metabolites. Journal of Molecular Modeling. 18(7): 2907-2916.
  • Vivekanand BHM, Mahendra Raj DBK, 2015. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes. Journal of Molecular Structure, 1079: 214-224.
  • Yüksek H, Kolaylı S, Küçük, M, Yüksek MO, Ocak U., Şahinbaş E, Sivrikaya E, Ocak M, 2006. Synthesis and Antioxidant Activities of Some 4-benzylidenamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-one Derivatives. Indian Journal of Chemistry, 45(B): 715-718
  • Yüksek H, Kutanis O, Özdemir G, Beytur M, Kara S, Gürsoy Kol Ö, Alkan M. 2018. Synthesis, In Vitro Antioxidant and Antimicrobial Activities of Some Novel 2-Methoxy-4-[(3-substitue-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)azomethine]phenyl 2-methylbenzoate Derivatives, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9 (4), 501-512.
  • Wright JS, Johnson ER, DiLabio GA, 2001. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society, 123(6): 1173-1183.
  • Xue Y, Zheng Y, Zhang L, Wu W, Yu D, Liu Y, 2013. Theoretical Study on the Antioxidant Properties of 2′-hydroxychalcones: H-atom vs. Electron Transfer Mechanism. Journal of Molecular Modeling, 19(9): 3851-3862.
  • Zabulica A, Balan M, Belei D, Sava M, Simionescu BC, Marin L, 2013. Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization. Chemical Science International Journal, 96 (3); 686-689.
  • Zhang HY, Ji HF, 2006. How Vitamin E Scavenges DPPH Radicals in Polar Protic Media. New Journal of Chemistry, 30(4): 503-504.

4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi

Year 2019, Volume: 9 Issue: 1, 512 - 521, 01.03.2019
https://doi.org/10.21597/jist.481990

Abstract

Bu çalışmada, antioksidan özellikleri deneysel
olarak belirlenmiş bazı 4-benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on
türevleri bileşiklerinin Yoğunluk Fonksiyonel Teorisi yöntemiyle antioksidan
etkinliklerinin karşılaştırılması yapılmıştır. Yoğunluk fonksiyonel teorisine
(DFT) dayanan kuantum kimyasal hesaplamalar, deneysel sonuçlarında en fazla ve
en az antioksidan aktiviteye sahip
4-benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on türevlerinin (2a ve 2g
için) arasındaki ilişkiyi incelemek için kullanılmıştır. Antioksidan aktivitesi
üzerindeki solvasyon etkileri, farklı dielektrik sabitleri (ϵ = 2.25, C6H6;
ϵ = 78.39, H2
O) ile iletken benzeri polarize süreklilik modeli
kullanılarak dikkate alınmıştır. Üç antioksidan reaksiyon mekanizması, hidrojen
atom transferi (HAT), tek elektron transfer-proton transferi (SET-PT) ve
ardışık proton kaybı elektron transferi (SPLET) açıklanmıştır. Bu
mekanizmalardaki adımlarla ilgili reaksiyon entalpileri gaz fazında ve
çözücülerde hesaplanmış, hesaplanan sonuçların deneysel değerlerle uyumluluğu
tartışılmıştır. Sonuçlar, SPLET'in sulu fazda 2a ve 2g’nin antioksidan
aktivitesini tanımlamak için en uygun mekanizma olduğunu göstermiştir, SPLET en
termodinamik olarak makul reaksiyon yolunu temsil etmiştir. Hesaplamalar, DFT
yöntemiyle nötral moleküller ve anyonlar için rB3LYP/ 6-311++G (2d,2p),
radikaller ve katyonlar için uB3LYP/ 6-311++G (2d,2p) temel setleri
kullanılarak yapılmıştır. 

References

  • Abdel Aziz AA, 2013. A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143: 663-669.
  • Aktaş Yokuş Ö, Yüksek H, Manap S, Aytemiz F, Alkan M, Beytur M, Gürsoy Kol Ö, 2017. In-vitro biological activity of some new 1,2,4-triazole derivatives with their potentiometric titrations. Bulgarian Chemical Communications, 49 (1): 98-106.
  • Alafeefy AM, Bakht MA, Ganaie MA, Ansarie MN, El-Sayed NN, Awaad AS, 2015. Synthesis, analgesic, anti-inflammatory and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorganic & medicinal chemistry letters, 25 (2): 179-183.
  • Al Zoubi W, Al Mohanna ND, 2014. Membrane sensors based on Schiff bases as chelating ionophores-a review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132: 854-870.
  • Ambike V, Adsule S, Ahmed F, Wang Z, Afrasiabi Z, Sinn E, Sarkar F, Padhye S, 2007 Copper conjugates of nimesulide Schiff bases targeting VEGF, COX and Bcl-2 in pancreatic cancer cells. Journal of Inorganic Biochemistry, 101: 55-59.
  • Amer S, El-Wakiel N, El-Ghamry H, 2013. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives. Journal of Molecular Structure, 1049: 326-335.
  • Andres S, Guarin P, Dufresne S, Tsang D, Sylla A, Skene WG, 2007 Photophysical, electrochemical, and crystallographic investigation of conjugated fluoreno azomethines and their precursors. Journal of Materials Chemistry, 17: 2801-2811.
  • Azam F, Singh S, Khokhra SL, Prakash O, 2007 Synthesis of Schiff bases of naphtha [1,2-d] thiazol-2-amine and metal complexes of 2-(2'-hydroxy) benzylideneaminonaphthothiazole as potential antimicrobial agents. Journal of Zhejiang University Science B, 8 (6): 446-452.
  • Bahçeci Ş, Yıldırım N, Manap S, Beytur M, Yüksek H, 2016. Synthesis, Characterization and Antioxidant Properties of New 3-Alkyl(Aryl)-4-(3-hydroxy-4-methoxy-benzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones. Rasayan Journal of Chemistry. 9 (3) : 494-501.
  • Bartmess JE, 1994. Thermodynamics of the Electron and the Proton. The Journal of Physical Chemistry, 98(25): 6420-6424.
  • Becke AD, 1993. Density Functional Thermochemistry. III. The Role of Exact Exchange. The Journal of Chemical Physics, 98(7): 5648-5652.
  • Bors W, Heller W, Michel C, Saran M, 1990. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods in Enzymology. 186. 343-355.
  • Bizarr, MM, Cabral B JC, de Santos R MB, Simões JAM, 1999. Substituent Effects on the OH Bond Dissociation Enthalpies in Phenolic Compounds: Agreements and Controversies. Pure and Applied Chemistry, 71(8): 1609-1610.
  • Cai W, Chen Y, Xie L, Zhang H, Hou C, 2014. Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues. European Food Research and Technology, 238 (1): 121-128
  • Cances E, Mennucci B, Tomasi J, 1997. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. The Journal of Chemical Physics, 107(8): 3032-3041.
  • Cimerman Z, Mennucci B, Antolić, J, 1999. Fluorescence characteristics of Schiff bases derived from amino- and aminoalkylpyridines. Spectroscopy Letters, 32: 181-196.
  • Di Bella S, Oliveri IP, Colombo A, Dragonetti C, Righetto S, Roberto D, 2012. An unprecedented switching of the second-order nonlinear optical response in aggregate bis(salicylaldiminato)zinc(II) Schiff-base complexes. Dalton Transactions. 41: 7013-7016.
  • Fifen JJ, Nsangou M, Dhaouadi Z, Motapon O, Jaidane N, 2011. Solvent Effects on the Antioxidant Activity of 3, 4-dihydroxyphenylpyruvic acid: DFT and TD-DFT Studies. Computational and Theoretical Chemistry, 966(1-3): 232-243.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Vreven TJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin N, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli CJ, Ochterski W, Martin LR, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J and Fox DJ, 2009. Gaussian Inc., Wallingford CT.
  • Hosnya NM, Hussiena MA, Radwana FM, Nawar N, 2014. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone. Spectrochimica Acta Part A, 132: 121–129.
  • Ismail TMA, 2005. Mononuclear and binuclear Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of schiff-base ligands derived from 7-formyl-8-hydroxyquinoline and diaminonaphthalenes. Journal of Molecular Structure, 58 (2): 141-151.
  • Kabanda MM, Tran VT, Seema KM, Serobatse KR, Tsiepe TJ, Tran QT, Ebenso EE, 2015. Conformational, Electronic and Antioxidant Properties of Lucidone, Linderone and Methyllinderone: DFT, QTAIM and NBO Studies. Molecular Physics, 113(7): 683-697.
  • Khanye SD, Gutb J, Rosenthal PJ, Chibale K, Smith GS, 2011. Ferrocenylthiosemicarbazones conjugated to a poly (propyleneimine) dendrimer scaffold: Synthesis and in vitro antimalarial activity. Journal of Organometallic Chemistry, 696 (21): 3296-3300.
  • Klein E, Rimarcik J, Lukes V, 2009. DFT/B3LYP Study of the O–H Bond Dissociation Enthalpies and Proton Affinities of Para-and Meta-Substituted Phenols in Water and Benzene. Acta Chim. Slovaca: 2(2): 37-51.
  • Kumar S, Dhar DN, Saxena PM, 2009. Applications of metal complexes of Schiff bases-A review. Molecular Physics, 68 (3): 181-187.
  • Leopoldini M, Russo N, Toscano M, 2006. Gas and Liquid Phase Acidity of Natural Antioxidants. Journal of Agricultural and Food Chemistry, 54(8): 3078-3085.
  • Marković Z, Jeremić S, Marković JD, Pirković MS, Amić D, 2016. Influence of Structural Characteristics of Substituents on the Antioxidant Activity of Some Anthraquinone Derivatives. Computational and Theoretical Chemistry, 1077: 25-31.
  • Mc Auliffe CA, Parish RV, Abu-El-Wafa SM, Issa RM, 1986. High-valent manganese complexes of tetradentate schiff base ligands. ESR-active and ESR-silent dimeric species. Inorganica Chimica Acta, 115: 91-94.
  • Mejeha MI, Nwandu MC, Okeoma KB, Nnanna LA, Chidiebere MA, Eze FC, Oguzie EE, 2012. Corrosion inhibition and adsorption behaviour of leaf extracts of Aspilia Africana on aluminium alloy AA 3003 in hydrochloric acid, Journal of Materials Science, 47: 1517-1524.
  • Notario R, 2000. Medium Effects on the Ionization of the Acidic Sites of Bifunctional Organic Molecules: The Case of 4-hydroxybenzoic acid. Journal Of Molecular Structure, 556(1-3): 245-252.
  • Parker VD, 1992. Homolytic Bond (HA) Dissociation Free Energies in Solution. Applications of the Standard Potential of the (H+/H. bul.) Couple. Journal of the American Chemical Society, 114(19): 7458-7462.
  • Rimarčík J, Lukeš V, Klein E, Ilčin M, 2010. Study of The Solvent Effect on The Enthalpies of Homolytic and Heterolytic N–H Bond Cleavage in P-phenylenediamine and Tetracyano-p-phenylenediamine. Journal of Molecular Structure: Theochem, 952(1-3): 25-30.
  • Sadasivam K, Kumaresan R, 2011. A Comparative DFT Study on the Antioxidant Activity of Apigenin and Scutellarein Flavonoid Compounds. Molecular Physics, 109(6): 839-852.
  • Szeląg M, Mikulski, D, Molski M, 2012. Quantum-Chemical İnvestigation of the Structure and the Antioxidant Properties of Α-Lipoic Acid and İts Metabolites. Journal of Molecular Modeling. 18(7): 2907-2916.
  • Vivekanand BHM, Mahendra Raj DBK, 2015. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes. Journal of Molecular Structure, 1079: 214-224.
  • Yüksek H, Kolaylı S, Küçük, M, Yüksek MO, Ocak U., Şahinbaş E, Sivrikaya E, Ocak M, 2006. Synthesis and Antioxidant Activities of Some 4-benzylidenamino-4, 5-dihydro-1H-1, 2, 4-triazol-5-one Derivatives. Indian Journal of Chemistry, 45(B): 715-718
  • Yüksek H, Kutanis O, Özdemir G, Beytur M, Kara S, Gürsoy Kol Ö, Alkan M. 2018. Synthesis, In Vitro Antioxidant and Antimicrobial Activities of Some Novel 2-Methoxy-4-[(3-substitue-4,5-dihydro-1H-1,2,4-triazol-5-one-4-yl)azomethine]phenyl 2-methylbenzoate Derivatives, Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9 (4), 501-512.
  • Wright JS, Johnson ER, DiLabio GA, 2001. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. Journal of the American Chemical Society, 123(6): 1173-1183.
  • Xue Y, Zheng Y, Zhang L, Wu W, Yu D, Liu Y, 2013. Theoretical Study on the Antioxidant Properties of 2′-hydroxychalcones: H-atom vs. Electron Transfer Mechanism. Journal of Molecular Modeling, 19(9): 3851-3862.
  • Zabulica A, Balan M, Belei D, Sava M, Simionescu BC, Marin L, 2013. Novel luminescent phenothiazine-based Schiff bases with tuned morphology. Synthesis, structure, photophysical and thermotropic characterization. Chemical Science International Journal, 96 (3); 686-689.
  • Zhang HY, Ji HF, 2006. How Vitamin E Scavenges DPPH Radicals in Polar Protic Media. New Journal of Chemistry, 30(4): 503-504.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Zeynep Turhan Irak 0000-0002-3587-2576

Murat Beytur 0000-0002-7098-5592

Publication Date March 1, 2019
Submission Date November 13, 2018
Acceptance Date December 7, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Turhan Irak, Z., & Beytur, M. (2019). 4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology, 9(1), 512-521. https://doi.org/10.21597/jist.481990
AMA Turhan Irak Z, Beytur M. 4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. March 2019;9(1):512-521. doi:10.21597/jist.481990
Chicago Turhan Irak, Zeynep, and Murat Beytur. “4-Benzilidenamino-4,5-Dihidro-1H-1,2,4-Triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 512-21. https://doi.org/10.21597/jist.481990.
EndNote Turhan Irak Z, Beytur M (March 1, 2019) 4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi. Journal of the Institute of Science and Technology 9 1 512–521.
IEEE Z. Turhan Irak and M. Beytur, “4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 512–521, 2019, doi: 10.21597/jist.481990.
ISNAD Turhan Irak, Zeynep - Beytur, Murat. “4-Benzilidenamino-4,5-Dihidro-1H-1,2,4-Triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9/1 (March 2019), 512-521. https://doi.org/10.21597/jist.481990.
JAMA Turhan Irak Z, Beytur M. 4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9:512–521.
MLA Turhan Irak, Zeynep and Murat Beytur. “4-Benzilidenamino-4,5-Dihidro-1H-1,2,4-Triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 512-21, doi:10.21597/jist.481990.
Vancouver Turhan Irak Z, Beytur M. 4-Benzilidenamino-4,5-dihidro-1H-1,2,4-triazol-5-on Türevlerinin Antioksidan Aktivitelerinin Teorik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9(1):512-21.