Research Article
BibTex RIS Cite

Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi

Year 2019, Volume: 9 Issue: 2, 985 - 992, 01.06.2019
https://doi.org/10.21597/jist.439066

Abstract

Bu çalışmada, Giemsa floresan boyasının suda çözünür sülfonat kaliksaren türevleri ile etkileşimleri spektrofotometrik yöntemlerle incelenmiştir. Bu araştırmanın amacı sülfonat kaliks[n]arenler ve Giemsa arasındaki olası moleküller arası etkileşimi değerlendirmektir. Spektrofotometrik veriler, bu etkileşimin absorbsiyon ve emisyon ölçümlerindeki değişimlere bağlı olarak kaliks[n]arenler ve Giemsa arasında muhtemel bir bağlanma meydana geldiğini göstermiştir. Sülfonat kaliks[n]arenler ve Giemsa arasındaki moleküler etkileşim, Giemsa'nın, lökosit, eritrosit, nükleus ve sitoplazma morfolojisi gibi biyolojik boyama uygulamaları sırasında kullanılmasına ilişkin bazı durumlara yön verebilir.

References

  • Agudelo D, Beauregard M, Bérubé G, Tajmir-Riahi HA, 2012. Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. Journal of Photochemistry and Photobiology B: Biology, 117: 185-192.
  • Akceylan E, Yilmaz, M, 2011. Synthesis of water-soluble calixarenes catalyzed one-pot Mannich-Type reaction in aqueous media. Polycyclic Aromatic Compounds, 36: 801-816.
  • Bayrakcı M, Ertul S, Yilmaz M, 2012. Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74: 293–303.
  • Bayrakcı M, Ertul S, Yilmaz, M, 2011. Transportation of poorly soluble drugmolecules from the organic phase to the aqueous phase by using phosphorylatedcalixarenes. Journal of Chemical and Engineering Data, 56: 4473–4479.
  • Bayrakcı M, Yilmaz B, 2018. Intermolecular interactions and binding mechanism of inclusion complexation between sulfonate calix[n]arenes and ethidium bromide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90: 341-349.
  • Ozyilmaz E, Bayrakci M, Yilmaz M, 2016. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorganic Chemistry, 65: 1-8.
  • Fei X, Zhang Y, Zhu S, Liu L, Yu L, 2013. Spectral study and protein labeling of ınclusion complex between dye and calixarene sulfonate. Applied Spectroscopy, 67: 520–525.
  • Gutsche CD, Lin LG, 1986. Calixarene 12: the synthesis of functionalized calixarene. Tetrahedron, 42: 1633-1640.
  • Hayashi M, Morita T, Kodama Y, Sofuni T, Ishidate JM, 1990. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutation Research Letters, 245: 245-249.
  • Lakowicz JR, 2006. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 1: 5-33.
  • Perry P, Wolff S, 1974. New Giemsa method for the differential staining of sister chromatids. Nature, 251: 156-158.
  • Rowley JD, 1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243: 290-293.
  • Shinkai S, Araki K, Tsubaki T, Arimura T, Manabe O, 1987. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. Journal of the Chemical Society, Perkin Transactions 1: 2297-2299.

The Spectrophotometric Investigation of Interaction of Water-Soluble Calixarene with Coloring Agent Bioactive Giemsa Dye

Year 2019, Volume: 9 Issue: 2, 985 - 992, 01.06.2019
https://doi.org/10.21597/jist.439066

Abstract

In this study, the interactions of Giemsa fluorescent dye with water- soluble sulfonate calixarene derivatives were investigated by spectrophotometry methods. The purpose of this research is to evaluated the possible interaction between sulfonate calix[n]arenes and Giemsa. The spectrophotometric datas showed that this interaction was due to possible binding between calix[n]arenes and Giemsa, depending on the changes in absorption and emission measurements. Molecular interaction between sulfonate calix[n]arenes and Giemsa could give direction to some status related to the using of Giemsa during biological staining applications as leucocytes, erythrocytes, nucleus and cytoplasm morphology.

References

  • Agudelo D, Beauregard M, Bérubé G, Tajmir-Riahi HA, 2012. Antibiotic doxorubicin and its derivative bind milk β-lactoglobulin. Journal of Photochemistry and Photobiology B: Biology, 117: 185-192.
  • Akceylan E, Yilmaz, M, 2011. Synthesis of water-soluble calixarenes catalyzed one-pot Mannich-Type reaction in aqueous media. Polycyclic Aromatic Compounds, 36: 801-816.
  • Bayrakcı M, Ertul S, Yilmaz M, 2012. Synthesis of new water-soluble phosphonate calixazacrowns and their use as drug solubilizing agents. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74: 293–303.
  • Bayrakcı M, Ertul S, Yilmaz, M, 2011. Transportation of poorly soluble drugmolecules from the organic phase to the aqueous phase by using phosphorylatedcalixarenes. Journal of Chemical and Engineering Data, 56: 4473–4479.
  • Bayrakcı M, Yilmaz B, 2018. Intermolecular interactions and binding mechanism of inclusion complexation between sulfonate calix[n]arenes and ethidium bromide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 90: 341-349.
  • Ozyilmaz E, Bayrakci M, Yilmaz M, 2016. Improvement of catalytic activity of Candida rugosa lipase in the presence of calix[4]arene bearing iminodicarboxylic/phosphonic acid complexes modified iron oxide nanoparticles. Bioorganic Chemistry, 65: 1-8.
  • Fei X, Zhang Y, Zhu S, Liu L, Yu L, 2013. Spectral study and protein labeling of ınclusion complex between dye and calixarene sulfonate. Applied Spectroscopy, 67: 520–525.
  • Gutsche CD, Lin LG, 1986. Calixarene 12: the synthesis of functionalized calixarene. Tetrahedron, 42: 1633-1640.
  • Hayashi M, Morita T, Kodama Y, Sofuni T, Ishidate JM, 1990. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutation Research Letters, 245: 245-249.
  • Lakowicz JR, 2006. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 1: 5-33.
  • Perry P, Wolff S, 1974. New Giemsa method for the differential staining of sister chromatids. Nature, 251: 156-158.
  • Rowley JD, 1973. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature, 243: 290-293.
  • Shinkai S, Araki K, Tsubaki T, Arimura T, Manabe O, 1987. New syntheses of calixarene-p-sulphonates and p-nitrocalixarenes. Journal of the Chemical Society, Perkin Transactions 1: 2297-2299.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Mevlüt Bayrakçı 0000-0002-0416-2870

Bahar Yılmaz 0000-0002-0416-2870

Publication Date June 1, 2019
Submission Date June 29, 2018
Acceptance Date December 7, 2018
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Bayrakçı, M., & Yılmaz, B. (2019). Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi. Journal of the Institute of Science and Technology, 9(2), 985-992. https://doi.org/10.21597/jist.439066
AMA Bayrakçı M, Yılmaz B. Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi. J. Inst. Sci. and Tech. June 2019;9(2):985-992. doi:10.21597/jist.439066
Chicago Bayrakçı, Mevlüt, and Bahar Yılmaz. “Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 985-92. https://doi.org/10.21597/jist.439066.
EndNote Bayrakçı M, Yılmaz B (June 1, 2019) Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi. Journal of the Institute of Science and Technology 9 2 985–992.
IEEE M. Bayrakçı and B. Yılmaz, “Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 985–992, 2019, doi: 10.21597/jist.439066.
ISNAD Bayrakçı, Mevlüt - Yılmaz, Bahar. “Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi”. Journal of the Institute of Science and Technology 9/2 (June 2019), 985-992. https://doi.org/10.21597/jist.439066.
JAMA Bayrakçı M, Yılmaz B. Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9:985–992.
MLA Bayrakçı, Mevlüt and Bahar Yılmaz. “Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 985-92, doi:10.21597/jist.439066.
Vancouver Bayrakçı M, Yılmaz B. Biyoaktif Giemsa Boyama Ajanı İle Suda Çözünen Sulfonato Kaliksaren Moleküllerinin Etkileşiminin Spektrofotometrik Olarak İncelenmesi. J. Inst. Sci. and Tech. 2019;9(2):985-92.