Research Article
BibTex RIS Cite

The Quasicompact-Open Topology on QC(X)

Year 2019, Volume: 9 Issue: 2, 1090 - 1097, 01.06.2019
https://doi.org/10.21597/jist.481927

Abstract

This paper introduces the quasicompact-open
topology on the set
 of all
realvalued functions defined on a Tychonoff space, which are continuous on
quasicompact subsets of
. Then metrizability, complete metrizability,
separability and second countability of this topology are studied in detail.

References

  • Arens R F, 1946. A topology for spaces of transformations. Annals of Mathematics. 47: 480–495.
  • Arens R, Dugundji J, 1951. Topologies for function spaces. Pacific Journal of Mathematics. 1: 5–31.
  • D’Aristotle A J, 1973. Quasicompactness and functionally Hausdorff spaces. Journal of the Australian Mathematical Society. 15(3): 319–324.
  • Engelking R, 1989. General Topology, revised and completed ed. Heldermann Verlag, Berlin.
  • Fox, R H, 1945. On topologies for function spaces. Bulletin of the American Mathematical Society. 51: 429–432.
  • Frolik, Z, 1959. Generalization of compact and Lindelöf spaces. Czechoslovak Mathematical Journal. 13(84): 172–217 (Russian).
  • Gulick, D, 1992. The σ-compact-open topology and its relatives. Mathematica Scandinavica. 30: 159– 176.
  • Husain T, 1977. Topology and Maps. Plenum Press, New York.
  • Jackson J R, 1952. Comparison of topologies on function spaces. Proc. Amer. Math. Soc. 3: 156–158.
  • Kundu S, Garg P,2016. The pseudocompact-open topology on C(X). Topology Proceedings. 30(1): 279– 299.
  • Kundu S, Raha A B, 1995. The bounded-open topology and its relatives. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. 27: 61–77.
  • McArthur W. G, 1973. G_δ-diagonals and metrization theorems. Pacific Journal of Mathematics. 44(2): 613-617.
  • McCoy R A, Ntantu I, 1988. Topological Properties of Spaces of Continuous Functions. Springer-Verlag, Berlin.
  • Osipov A V, 2012. The C-compact-open topology on function spaces. Topology and its Applications. 159: 3059–3066.
  • Porter K F, 1993. The open-open topology for function spaces. InternationalJournal of Mathematics and Mathematical Sciences. 16 (1): 111–116.
  • Siwiec F,1975. Generalizations of the first axiom of countability. Rocky Mountain J. Math. 5(1): 1-60.
  • Taylor A. E, Lay D. C, 1980. Introduction to Functional Analysis, 2nd ed.. John Wiley and Sons, New York.
  • Tokat D, Osmanoglu I, 2016. Some properties of the quasicompact-open topology on C(X). Journal of Nonlinear Sciences and Applications. 9: 3511–3518.

QC(X) Üzerinde Yarı Kompakt-Açık Topoloji

Year 2019, Volume: 9 Issue: 2, 1090 - 1097, 01.06.2019
https://doi.org/10.21597/jist.481927

Abstract

Bu makalede, Tychonoff  uzayının yarı kompakt alt kümeleri üzerinde
sürekli olan tüm reel değerli fonksiyonların kümesi
 üzerindeki yarı kompakt-açık topoloji
tanıtıldı. Daha sonra bu topolojinin metriklenebilirliği, tam
metriklenebilirliği, ayrılabilirliği ve ikinci sayılabilirliği ayrıntılı olarak
incelendi.

References

  • Arens R F, 1946. A topology for spaces of transformations. Annals of Mathematics. 47: 480–495.
  • Arens R, Dugundji J, 1951. Topologies for function spaces. Pacific Journal of Mathematics. 1: 5–31.
  • D’Aristotle A J, 1973. Quasicompactness and functionally Hausdorff spaces. Journal of the Australian Mathematical Society. 15(3): 319–324.
  • Engelking R, 1989. General Topology, revised and completed ed. Heldermann Verlag, Berlin.
  • Fox, R H, 1945. On topologies for function spaces. Bulletin of the American Mathematical Society. 51: 429–432.
  • Frolik, Z, 1959. Generalization of compact and Lindelöf spaces. Czechoslovak Mathematical Journal. 13(84): 172–217 (Russian).
  • Gulick, D, 1992. The σ-compact-open topology and its relatives. Mathematica Scandinavica. 30: 159– 176.
  • Husain T, 1977. Topology and Maps. Plenum Press, New York.
  • Jackson J R, 1952. Comparison of topologies on function spaces. Proc. Amer. Math. Soc. 3: 156–158.
  • Kundu S, Garg P,2016. The pseudocompact-open topology on C(X). Topology Proceedings. 30(1): 279– 299.
  • Kundu S, Raha A B, 1995. The bounded-open topology and its relatives. Rendiconti dell'Istituto di Matematica dell'Università di Trieste. 27: 61–77.
  • McArthur W. G, 1973. G_δ-diagonals and metrization theorems. Pacific Journal of Mathematics. 44(2): 613-617.
  • McCoy R A, Ntantu I, 1988. Topological Properties of Spaces of Continuous Functions. Springer-Verlag, Berlin.
  • Osipov A V, 2012. The C-compact-open topology on function spaces. Topology and its Applications. 159: 3059–3066.
  • Porter K F, 1993. The open-open topology for function spaces. InternationalJournal of Mathematics and Mathematical Sciences. 16 (1): 111–116.
  • Siwiec F,1975. Generalizations of the first axiom of countability. Rocky Mountain J. Math. 5(1): 1-60.
  • Taylor A. E, Lay D. C, 1980. Introduction to Functional Analysis, 2nd ed.. John Wiley and Sons, New York.
  • Tokat D, Osmanoglu I, 2016. Some properties of the quasicompact-open topology on C(X). Journal of Nonlinear Sciences and Applications. 9: 3511–3518.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

İsmail Osmanoğlu 0000-0002-1005-4075

Publication Date June 1, 2019
Submission Date November 12, 2018
Acceptance Date February 23, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Osmanoğlu, İ. (2019). QC(X) Üzerinde Yarı Kompakt-Açık Topoloji. Journal of the Institute of Science and Technology, 9(2), 1090-1097. https://doi.org/10.21597/jist.481927
AMA Osmanoğlu İ. QC(X) Üzerinde Yarı Kompakt-Açık Topoloji. J. Inst. Sci. and Tech. June 2019;9(2):1090-1097. doi:10.21597/jist.481927
Chicago Osmanoğlu, İsmail. “QC(X) Üzerinde Yarı Kompakt-Açık Topoloji”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 1090-97. https://doi.org/10.21597/jist.481927.
EndNote Osmanoğlu İ (June 1, 2019) QC(X) Üzerinde Yarı Kompakt-Açık Topoloji. Journal of the Institute of Science and Technology 9 2 1090–1097.
IEEE İ. Osmanoğlu, “QC(X) Üzerinde Yarı Kompakt-Açık Topoloji”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 1090–1097, 2019, doi: 10.21597/jist.481927.
ISNAD Osmanoğlu, İsmail. “QC(X) Üzerinde Yarı Kompakt-Açık Topoloji”. Journal of the Institute of Science and Technology 9/2 (June 2019), 1090-1097. https://doi.org/10.21597/jist.481927.
JAMA Osmanoğlu İ. QC(X) Üzerinde Yarı Kompakt-Açık Topoloji. J. Inst. Sci. and Tech. 2019;9:1090–1097.
MLA Osmanoğlu, İsmail. “QC(X) Üzerinde Yarı Kompakt-Açık Topoloji”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 1090-7, doi:10.21597/jist.481927.
Vancouver Osmanoğlu İ. QC(X) Üzerinde Yarı Kompakt-Açık Topoloji. J. Inst. Sci. and Tech. 2019;9(2):1090-7.