Research Article
BibTex RIS Cite

Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması

Year 2019, Volume: 9 Issue: 2, 911 - 921, 01.06.2019
https://doi.org/10.21597/jist.496412

Abstract

Katkı ve donatı malzemeleri, ince ve kaba daneli zeminlerin bazı mühendislik özelliklerini iyileştirmek amacı ile uygulamada sıkça kullanılmaktadır. Fakat sınırlı sayıdaki çalışmada ayrık polimer

lifler ile donatılı ince daneli zeminler konu edilmiştir. Bu çalışmada, yüksek plastisiteli bir kil (CH) zemin içerisine rastgele dağıtılmış farklı uzunluktaki (3 mm, 6 mm ve 12 mm) polipropilen liflerin donma çözülme davranışı üzerindeki etkilerini araştırmak için laboratuvarda bir seri serbest basınç ve donma çözülme deneyleri yapılmıştır. Polipropilen lif oranı, donatılı zeminin toplam kuru ağırlığının %0.15,

%0.20 ve %0.25’i olarak seçilmiştir. Bu oranlar her bir propilen lif uzunluğu için aynı seçilmiştir. Donma çözülme çevrim sayısı 1, 3, 5 ve 10 olarak alınmıştır. Yapılan deneyler sonucunda polipropilen lif uzunluğu arttıkça her bir donma-çözülme çevriminde başlangıç elastisite modülünün azaldığı belirlenmiştir. Donatılı numuneler, daha düktil bir davranış sergilemiştir. %0.15 ve %0.20 polipropilen lifle donatılandırılmış zemin numunelerinin 1, 3 ve 5 çevrim sayılarında donma-çözülme dayanımının azaldığı görülmüştür.

Supporting Institution

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Thanks

Bu araştırma çalışmasına, Atatürk Üniversitesi Bilimsel Araştırma Projesi kapsamından destek sağlamıştır. Yazarlar bu destekten dolayı Atatürk Üniversitesi Rektörlüğü’ne teşekkürü bir borç bilirler.

References

  • Al Wahab RM, El-Kedrah MA, 1995. Using Polipropilen Fibers to Reduce Tension Cracks and Shrink/Swell in a Compacted Clay. Geotechnical Special Publication, 46(1): 791-805.
  • Andersland OB, Ladanyi B, 2004. Frozen Ground Engineering, 2nd edn. USA: John Wiley & Sons.
  • Ang EC, Erik LJ, 2003. Specimen Size Effects for Polipropilen Fiber-Reinforced Silty Clay in Unconfined Compression. Geotechnical Testing Journal, 26(2): 191-200.
  • ASTM D 2166. Standard Test Method For Unconfined Compressive Strength of Cohesive Soil. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, Pennsylvania, USA.
  • ASTM D 698-78. Fundamental Principles of Soil Compaction. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 4318-00, 2000. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for Testing and Materials, West Conshohocken, PA.
  • Baykal G, Saygılı A, 2012. A New Technique to İmprove Freeze-Thaw Durability of Fly Ash. Fuel 102: 221-226.
  • BS 1377 Part 2 1990. Methods of Test For Soils for Civil Engineering Purposes. Classification Tests. British Standards Institution.
  • Cruzda KA, Hohmann M, 1997. Freezing effect on Strength of Clayey Soils. Applied Clay Science 12: 165-187.
  • Çalik Y, 2017. Ayrık Sentetik Liflerle Rastgele Donatılandırılmış İnce Daneli Zeminlerde Donatı Uzunluğunun Donma-Çözünme Davranışı Üzerindeki Etkisinin Araştırılması, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Freilich BJ, Li C, Zornberg JG, 2010. Effective Shear Strength of Fiber-Reinforced Clays. 9th International Conference on Geosynthetics. Brazil.
  • Ghazavi M, Roustaie M, 2010. The İnfluence of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Fiber-Reinforced Clay. Cold Regions Science and Technology, 61: 125-131.
  • Güllü H, Hazirbaba K, 2010. Unconfined Compressive Strength and Post-Freeze-Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 62: 142-150.
  • Hazirbaba K, Güllü H, 2010. California Bearing Ratio İmprovement and Freeze-Thaw Performance of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 63: 50-60.
  • Hazirbaba K, Zhang Y, Hulsey JL, 2011. Evaluation of Temperature and Freeze-Thaw Effects on Excess Pore Pressure Generation of Fine-Grained Soils. Soil Dynamics and Earthquake Engineering, 31: 372-384.
  • Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A, 2012. A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers. Construction and Building Materials, 30: 100-116.
  • Kamei T, Ahmed A, Shibi T, 2012. Effect of Freeze-Thaw Cycles on Durability and Strength of Very Soft Clay Soil Stabilised with Recycled Bassanite. Cold Regions Science and Technology, 82: 124-129.
  • Kumar A, Walia BS, Mohan J, 2006. Compressive Strength of Polipropilen Fiber Reinforced Higly Compressible Clay. Construction and Building Materials, 20(10): 1063-1068.
  • Kvǽrnǿ HS, Ǿygarden L, 2006. The Influence of Freeze-Thaw Cycles and Soil Moisture on Aggregate Stability of Three Soils in Norway. Catena, 67: 175-182.
  • Li C, 2005. Mechanical Response of Fiber-Reinforced Soil, Thesis of PhD, The University of Texas, Austin.
  • Liu J, Wang T, Tian Y, 2010. Experimental Study of The Dynamic Properties of Cement- and Lime- Modified Clay Soils Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology, 61: 29-33.
  • Maher MH, Ho YC, 1994. Mechanical Properties of Kaolinite/Fiber Soil Composit. Journal of Geotechnical Engineering, 120: 1381-1393.
  • Meteoroloji Genel Müdürlüğü 12. Bölge Erzurum.
  • Qi J, Wei M, Song C, 2008. Influence of Freeze-Thaw on Engineering Properties of Silty Soil. Cold Regions Science and Technology, 53: 397-404.
  • Önalp A, 2002. Geoteknik Bilgisi I Çözümlü Problemlerle Zeminler ve Mekaniği, Birsen Yayınevi, İstanbul, Türkiye.
  • Özkul ZH, Baykal G, 2007. Shear Behavior of Compacted Rubber Polipropilen Fiber-Clay Composite in Drained and Undrained Loading. Journal of Geotechnical and Geoenviromental Engineering, 133(7): 767-781.
  • Rafalko SD, Brandon TL, Filz GM, Mitchell JK, 2007. Polipropilen Fiber Reinforcement for Rapid Stabilization of Soft Clay Soils. Tranportation Research Record, 2026: 21-29.
  • Ramaji AE, 2012. A Review on the Soil Stabilization Using Low-Cost Methods. Journal of Applied Sciences Research, 8(4): 2193-2196.
  • Shita SA, Baghdadi Z, 2001. Simplified Method to Assess Freeze-Thaw Durability of Soil Cement. Journal of Materials in Civil Engineering, July/August 2001, 243-247.
  • Tunç A, 2002. Yol Mühendisliğinde Geoteknik ve Uygulamaları, Atlas Yayınevi, İstanbul, Turkiye.
  • Yarbaşı N, Kalkan E, Akbulut S, 2007. Modification of the Geotechnical Properties, as Influenced by Freeze-Thaw, of Granular Soils with Waste Additives. Cold Regions Science and Technology, 48:44-54.
  • Yetimoğlu T, Salbas O, 2003. A Study on Shear Strength of Sands Reinforced with Randomly Distributed Discrete Polipropilen Fibers. Geotextiles and Geomembranes, 21:103-110.
  • Zaimoğlu AS, 2010. Freezing-Thawing Behavior of Fine-Grained Soils Reinforced with Polypropylene Fibers. Cold Regions Science and Technology, 60: 63-65.
  • Zaimoğlu AS, Hattatoğlu F, Akbulut RK, Yetimoğlu T. 2012 Freeze-Thaw Behavior of Fine Grained Soils Subjected to Surcharge Loads, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June 2012, Near East University, Nicosia, North Cyprus.

Investigation of Unconfined Compressive Strength in a Freezing-Thawing Cycle of a CH Clay Soil Randomly Equipped with Polypropylene Fiber

Year 2019, Volume: 9 Issue: 2, 911 - 921, 01.06.2019
https://doi.org/10.21597/jist.496412

Abstract

Additives and reinforcing materials are frequently used in practice with the aim of

improving some engineering properties of fine and coarse grained soils. However, separate polymer fibers

and fine-grained soils have been mentioned in some limited number of studies. In this study, a series of

unconfined compression and freeze-thaw tests were conducted in laboratory in order to investigate the

effects of polypropylene fibers of different lengths (3 mm, 6 mm, and 12 mm) dispersed in high plasticity

clay (CH) randomly on freeze-thaw behaviors. Fiber percentage for each length was chosen as 0.15%,

0.20%, and 0.25% of the total dry weight of the reinforced soil. Number of freeze-thaw cycles was taken as

1, 3, 5, and 10. As a result of the experiments, it was determined that, the initial modulus of elasticity of

each freeze-thaw cycle decreases as the polypropylene fiber length increases. Reinforced samples behaved

more ductile. As the number of cycles increased, freeze-thaw resistance in reinforced (0.15%-0.20%)

samples decreased in general for 1-3-5 cycles.

References

  • Al Wahab RM, El-Kedrah MA, 1995. Using Polipropilen Fibers to Reduce Tension Cracks and Shrink/Swell in a Compacted Clay. Geotechnical Special Publication, 46(1): 791-805.
  • Andersland OB, Ladanyi B, 2004. Frozen Ground Engineering, 2nd edn. USA: John Wiley & Sons.
  • Ang EC, Erik LJ, 2003. Specimen Size Effects for Polipropilen Fiber-Reinforced Silty Clay in Unconfined Compression. Geotechnical Testing Journal, 26(2): 191-200.
  • ASTM D 2166. Standard Test Method For Unconfined Compressive Strength of Cohesive Soil. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 2487-17. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, Pennsylvania, USA.
  • ASTM D 698-78. Fundamental Principles of Soil Compaction. American Society for Testing and Materials, West Conshohocken, Pennsylvania, USA.
  • ASTM D 4318-00, 2000. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society for Testing and Materials, West Conshohocken, PA.
  • Baykal G, Saygılı A, 2012. A New Technique to İmprove Freeze-Thaw Durability of Fly Ash. Fuel 102: 221-226.
  • BS 1377 Part 2 1990. Methods of Test For Soils for Civil Engineering Purposes. Classification Tests. British Standards Institution.
  • Cruzda KA, Hohmann M, 1997. Freezing effect on Strength of Clayey Soils. Applied Clay Science 12: 165-187.
  • Çalik Y, 2017. Ayrık Sentetik Liflerle Rastgele Donatılandırılmış İnce Daneli Zeminlerde Donatı Uzunluğunun Donma-Çözünme Davranışı Üzerindeki Etkisinin Araştırılması, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Freilich BJ, Li C, Zornberg JG, 2010. Effective Shear Strength of Fiber-Reinforced Clays. 9th International Conference on Geosynthetics. Brazil.
  • Ghazavi M, Roustaie M, 2010. The İnfluence of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Fiber-Reinforced Clay. Cold Regions Science and Technology, 61: 125-131.
  • Güllü H, Hazirbaba K, 2010. Unconfined Compressive Strength and Post-Freeze-Thaw Behavior of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 62: 142-150.
  • Hazirbaba K, Güllü H, 2010. California Bearing Ratio İmprovement and Freeze-Thaw Performance of Fine-Grained Soils Treated with Geofiber and Synthetic Fluid. Cold Regions Science and Technology, 63: 50-60.
  • Hazirbaba K, Zhang Y, Hulsey JL, 2011. Evaluation of Temperature and Freeze-Thaw Effects on Excess Pore Pressure Generation of Fine-Grained Soils. Soil Dynamics and Earthquake Engineering, 31: 372-384.
  • Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A, 2012. A Simple Review of Soil Reinforcement by Using Natural and Synthetic Fibers. Construction and Building Materials, 30: 100-116.
  • Kamei T, Ahmed A, Shibi T, 2012. Effect of Freeze-Thaw Cycles on Durability and Strength of Very Soft Clay Soil Stabilised with Recycled Bassanite. Cold Regions Science and Technology, 82: 124-129.
  • Kumar A, Walia BS, Mohan J, 2006. Compressive Strength of Polipropilen Fiber Reinforced Higly Compressible Clay. Construction and Building Materials, 20(10): 1063-1068.
  • Kvǽrnǿ HS, Ǿygarden L, 2006. The Influence of Freeze-Thaw Cycles and Soil Moisture on Aggregate Stability of Three Soils in Norway. Catena, 67: 175-182.
  • Li C, 2005. Mechanical Response of Fiber-Reinforced Soil, Thesis of PhD, The University of Texas, Austin.
  • Liu J, Wang T, Tian Y, 2010. Experimental Study of The Dynamic Properties of Cement- and Lime- Modified Clay Soils Subjected to Freeze-Thaw Cycles. Cold Regions Science and Technology, 61: 29-33.
  • Maher MH, Ho YC, 1994. Mechanical Properties of Kaolinite/Fiber Soil Composit. Journal of Geotechnical Engineering, 120: 1381-1393.
  • Meteoroloji Genel Müdürlüğü 12. Bölge Erzurum.
  • Qi J, Wei M, Song C, 2008. Influence of Freeze-Thaw on Engineering Properties of Silty Soil. Cold Regions Science and Technology, 53: 397-404.
  • Önalp A, 2002. Geoteknik Bilgisi I Çözümlü Problemlerle Zeminler ve Mekaniği, Birsen Yayınevi, İstanbul, Türkiye.
  • Özkul ZH, Baykal G, 2007. Shear Behavior of Compacted Rubber Polipropilen Fiber-Clay Composite in Drained and Undrained Loading. Journal of Geotechnical and Geoenviromental Engineering, 133(7): 767-781.
  • Rafalko SD, Brandon TL, Filz GM, Mitchell JK, 2007. Polipropilen Fiber Reinforcement for Rapid Stabilization of Soft Clay Soils. Tranportation Research Record, 2026: 21-29.
  • Ramaji AE, 2012. A Review on the Soil Stabilization Using Low-Cost Methods. Journal of Applied Sciences Research, 8(4): 2193-2196.
  • Shita SA, Baghdadi Z, 2001. Simplified Method to Assess Freeze-Thaw Durability of Soil Cement. Journal of Materials in Civil Engineering, July/August 2001, 243-247.
  • Tunç A, 2002. Yol Mühendisliğinde Geoteknik ve Uygulamaları, Atlas Yayınevi, İstanbul, Turkiye.
  • Yarbaşı N, Kalkan E, Akbulut S, 2007. Modification of the Geotechnical Properties, as Influenced by Freeze-Thaw, of Granular Soils with Waste Additives. Cold Regions Science and Technology, 48:44-54.
  • Yetimoğlu T, Salbas O, 2003. A Study on Shear Strength of Sands Reinforced with Randomly Distributed Discrete Polipropilen Fibers. Geotextiles and Geomembranes, 21:103-110.
  • Zaimoğlu AS, 2010. Freezing-Thawing Behavior of Fine-Grained Soils Reinforced with Polypropylene Fibers. Cold Regions Science and Technology, 60: 63-65.
  • Zaimoğlu AS, Hattatoğlu F, Akbulut RK, Yetimoğlu T. 2012 Freeze-Thaw Behavior of Fine Grained Soils Subjected to Surcharge Loads, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June 2012, Near East University, Nicosia, North Cyprus.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Yasin Çalık This is me 0000-0002-8728-0126

Rahim Kağan Akbulut 0000-0002-6342-1019

Ahmet Şahin Zaimoğlu 0000-0001-5245-0212

Temel Yetimoğlu This is me 0000-0001-5603-2229

Publication Date June 1, 2019
Submission Date December 13, 2018
Acceptance Date February 8, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Çalık, Y., Akbulut, R. K., Zaimoğlu, A. Ş., Yetimoğlu, T. (2019). Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması. Journal of the Institute of Science and Technology, 9(2), 911-921. https://doi.org/10.21597/jist.496412
AMA Çalık Y, Akbulut RK, Zaimoğlu AŞ, Yetimoğlu T. Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması. J. Inst. Sci. and Tech. June 2019;9(2):911-921. doi:10.21597/jist.496412
Chicago Çalık, Yasin, Rahim Kağan Akbulut, Ahmet Şahin Zaimoğlu, and Temel Yetimoğlu. “Polipropilen Lif Ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 911-21. https://doi.org/10.21597/jist.496412.
EndNote Çalık Y, Akbulut RK, Zaimoğlu AŞ, Yetimoğlu T (June 1, 2019) Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması. Journal of the Institute of Science and Technology 9 2 911–921.
IEEE Y. Çalık, R. K. Akbulut, A. Ş. Zaimoğlu, and T. Yetimoğlu, “Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 911–921, 2019, doi: 10.21597/jist.496412.
ISNAD Çalık, Yasin et al. “Polipropilen Lif Ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması”. Journal of the Institute of Science and Technology 9/2 (June 2019), 911-921. https://doi.org/10.21597/jist.496412.
JAMA Çalık Y, Akbulut RK, Zaimoğlu AŞ, Yetimoğlu T. Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması. J. Inst. Sci. and Tech. 2019;9:911–921.
MLA Çalık, Yasin et al. “Polipropilen Lif Ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 911-2, doi:10.21597/jist.496412.
Vancouver Çalık Y, Akbulut RK, Zaimoğlu AŞ, Yetimoğlu T. Polipropilen Lif ile Rastgele Donatılandırılan Bir CH Kil Zemininin Donma-Çözülme Çevrimlerinde Serbest Basınç Dayanımının Araştırılması. J. Inst. Sci. and Tech. 2019;9(2):911-2.