Research Article
BibTex RIS Cite

The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum

Year 2019, Volume: 9 Issue: 3, 1666 - 1673, 01.09.2019
https://doi.org/10.21597/jist.512652

Abstract

This study was concerned with the screening of antimicrobial products from fungi collected from soil and evalution of their antibiofilm activity. The isolate having antimicrobial and antibiofilm compounds was characterized by the molecular methods and identified as Aspergillus sclerotiorum. A. sclerotiorum was grown in yeast peptone glucose (YPG) medium and extracellular medium was extraction by 1:1 ethyl acetate. Crude extraction characterized through thin layer chromatography (TLC) on silica gel 60 HF254 and was detected five bands. Agar diffusion and TLC overlay assays were done against Gram-positive (Staphylococcus aureus ATCC 25923, meticilin resistance S. aureus (MRSA) and Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The most dense band (Rf:0.42) showed the best inhibition zone on TLC overlay. The results showed that the most dense band can potential source for antimicrobial compound. After the most dense band in silica gel was scraped and dissolved ethyl acetate for minimum inhibitory concentration (MIC) determination and crystal violet assay against S. aureus and MRSA. These results indicate that fungi, A. sclerotiorum, isolated from soil was potential source for antimicrobial and antibiofilm compounds.

References

  • Balouiri M, Sadiki M, Ibnsouda SK, 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2): 71-79.
  • Blackwell M, 2011. The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98(3): 426–438.
  • Bueno J, 2014. Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. Journal of Microbial & Biochemical Technology S3(004):1-9.
  • Cragg GM, Newman DJ, & Snader KM, 1997. Natural products in drug discovery and development. Journal of Natural Products, 60(1): 52-60.
  • Deepika VB, Murali TS, & Satyamoorthy K, 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 182, 125-140.
  • Dongari-Bagtzoglou A, 2008. Pathogenesis of mucosal biofilm infections: challenges and progress. Expert review of anti-infective therapy, 6(2): 201-208.
  • Feoktistova M, Geserick P, & Leverkus M. 2016. Crystal violet assay for determining viability of cultured cells. Cold Spring Harbor Protocols, 2016(4), pdb-prot087379.
  • Gootz TD, 2010. The global problem of antibiotic resistance. Critical Reviews™ in Immunology, 30 (1): 70-93.
  • Gray AI, Igoli JO, & Edrada-Ebel R, 2012. Natural products isolation in modern drug discovery programs. In Natural Products Isolation (pp. 515-534). Humana Press.
  • Hamburger MO, & Cordell GA, 1987. A direct bioautographic TLC assay for compounds possessing antibacterial activity. Journal of Natural Products, 50 (1): 19-22.
  • Kang SW, Hong SI, & Kim SW, 2005. Identification of Aspergillus strain with antifungal activity against Phytophthora species. Journal of Microbiology and Biotechnology, 15 (2): 227-233.
  • Leone S, Molinaro A, Alfieri F, Cafaro V, Lanzetta R, Di Donato A, & Parrilli M, 2006. The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydrate research, 341 (14): 2456-2461.
  • Lihan S, Choon YK, Hua NK, & Wasli ME, 2014. Screening for antimicrobial activity of fungi in soil samples collected from Kubah national park. International Journal of Scientific & Technology Research, 3 (2): 1-9.
  • Marques SC, Rezende JDGOS, Alves LADF, Silva BC, Alves E, Abreu LRD, & Piccoli RH, 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian Journal of Microbiology, 38 (3): 538-543.
  • Murali M, Mahendra C, Hema P, Rajashekar N, Nataraju A, Sudarshana MS, & Amruthesh KN, 2017. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant. Pharmaceutical Biology, 55 (1): 1623-1630.
  • Parsek MR, & Singh PK, 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology, 57(1): 677-701.
  • Patra JK, Gouda S, Sahoo SK, & Thatoi HN, 2012. Chromatography separation, 1H NMR analysis and bioautography screening of methanol extract of Excoecaria agallocha L. from Bhitarkanika, Orissa, India. Asian Pacific Journal of Tropical Biomedicine, 2(1): S50-S56.
  • Petrovska BB, 2012. Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6 (11): 1.
  • Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, & Jabbar A, 2010. Antimicrobial natural products: an update on future antibiotic drug candidates. Natural Product Reports, 27 (2): 238-254.
  • Santos IPD, Silva LCND, Silva MVD, Araújo JMD, Cavalcanti MDS, & Lima VLDM, 2015. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6, 350.
  • Simoes M, Simoes LC, & Vieira MJ, 2010. A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43 (4): 573-583.
  • Song X, Xia YX, He ZD, & Zhang HJ, 2018. A Review of Natural Products with Anti-biofilm Activity. Current Organic Chemistry, 22 (8): 789-817.
  • Stojanoski N, 1999. Development of health culture in Veles and its region from the past to the end of the 20th century. Veles: Society of Science and Art, 13-34.
  • Svahn KS, Göransson U, El-Seedi H, Bohlin L, Larsson DJ, Olsen B, & Chryssanthou E, 2012. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infection Ecology & Epidemiology, 2 (1): 11591.
  • Wang J, Nong XH, Zhang XY, Xu XY, Amin M, & Qi SH, 2017. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. Journal of Microbiology and Biotechnology, 27 (6): 1078-1089.
  • Zhang Z, Schwartz S, Wagner L, and Miller W, 2000, "A greedy algorithm for aligning DNA sequences", Journal of Computational Biology, 7 (1-2): 203-14.

Aspergillus sclerotıorum’dan Elde Edilen Biyoaktif Bileşiklerin Antimikrobiyal ve Antibiyofilm Aktivitelerinin Değerlendirilmesi

Year 2019, Volume: 9 Issue: 3, 1666 - 1673, 01.09.2019
https://doi.org/10.21597/jist.512652

Abstract

Bu çalışma, topraktan izole edilen funguslardan antimikrobiyal bileşiklerin taranmasını ve bu bileşiklerin antibiyofilm aktivitelerinin değerlendirilmesini kapsamaktadır. Antimikrobiyal ve antibiyofilm özellikteki bileşiklere sahip izolat, moleküler olarak karakterize edilmiş ve Aspergillus sclerotiorum olarak tanılanmıştır. A. sclerotiorum maya pepton glikoz (YPG) besiyerinde geliştirilmiş ve ekstrasellüler besiyeri 1:1 oranında etil asetat ile ekstrakte edilmiştir. Ekstraksiyon ürünü ince tabaka kromotografisi (TLC, silica gel 60 HF254) ile karakterize edilmiş ve 5 bant elde edilmiştir. Gram pozitif (Staphylococcus aureus ATCC 25923, metisiline dirençli S. aureus (MRSA), Enterococcus faecalis ATCC 29212) ve Gram negatif (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bakterilere karşı agar difüzyon ve TLC kapama deneyleri yapılmıştır. Rf değeri 0.42 olan bantın antimikrobiyal aktivite gösterdiği bulunmuştur. Bu bant TLC plaktan geri kazanılarak, minimum inhibitör konsantrasyonu (MIC) belirleme ve kristal viyole testi ile S. aureus ve MRSA’ ya karşı antibiyofilm aktivitesi değerlendirilmiştir. Bu sonuçlar, topraktan izole edilen fungus, A. sclerotiorum'un antimikrobiyal ve antibiyofilm bileşikleri için potansiyel bir kaynak olduğunu göstermektedir.

References

  • Balouiri M, Sadiki M, Ibnsouda SK, 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6 (2): 71-79.
  • Blackwell M, 2011. The Fungi: 1, 2, 3 … 5.1 million species? American Journal of Botany, 98(3): 426–438.
  • Bueno J, 2014. Anti-biofilm drug susceptibility testing methods: looking for new strategies against resistance mechanism. Journal of Microbial & Biochemical Technology S3(004):1-9.
  • Cragg GM, Newman DJ, & Snader KM, 1997. Natural products in drug discovery and development. Journal of Natural Products, 60(1): 52-60.
  • Deepika VB, Murali TS, & Satyamoorthy K, 2016. Modulation of genetic clusters for synthesis of bioactive molecules in fungal endophytes: A review. Microbiological Research, 182, 125-140.
  • Dongari-Bagtzoglou A, 2008. Pathogenesis of mucosal biofilm infections: challenges and progress. Expert review of anti-infective therapy, 6(2): 201-208.
  • Feoktistova M, Geserick P, & Leverkus M. 2016. Crystal violet assay for determining viability of cultured cells. Cold Spring Harbor Protocols, 2016(4), pdb-prot087379.
  • Gootz TD, 2010. The global problem of antibiotic resistance. Critical Reviews™ in Immunology, 30 (1): 70-93.
  • Gray AI, Igoli JO, & Edrada-Ebel R, 2012. Natural products isolation in modern drug discovery programs. In Natural Products Isolation (pp. 515-534). Humana Press.
  • Hamburger MO, & Cordell GA, 1987. A direct bioautographic TLC assay for compounds possessing antibacterial activity. Journal of Natural Products, 50 (1): 19-22.
  • Kang SW, Hong SI, & Kim SW, 2005. Identification of Aspergillus strain with antifungal activity against Phytophthora species. Journal of Microbiology and Biotechnology, 15 (2): 227-233.
  • Leone S, Molinaro A, Alfieri F, Cafaro V, Lanzetta R, Di Donato A, & Parrilli M, 2006. The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydrate research, 341 (14): 2456-2461.
  • Lihan S, Choon YK, Hua NK, & Wasli ME, 2014. Screening for antimicrobial activity of fungi in soil samples collected from Kubah national park. International Journal of Scientific & Technology Research, 3 (2): 1-9.
  • Marques SC, Rezende JDGOS, Alves LADF, Silva BC, Alves E, Abreu LRD, & Piccoli RH, 2007. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers. Brazilian Journal of Microbiology, 38 (3): 538-543.
  • Murali M, Mahendra C, Hema P, Rajashekar N, Nataraju A, Sudarshana MS, & Amruthesh KN, 2017. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant. Pharmaceutical Biology, 55 (1): 1623-1630.
  • Parsek MR, & Singh PK, 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology, 57(1): 677-701.
  • Patra JK, Gouda S, Sahoo SK, & Thatoi HN, 2012. Chromatography separation, 1H NMR analysis and bioautography screening of methanol extract of Excoecaria agallocha L. from Bhitarkanika, Orissa, India. Asian Pacific Journal of Tropical Biomedicine, 2(1): S50-S56.
  • Petrovska BB, 2012. Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6 (11): 1.
  • Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, & Jabbar A, 2010. Antimicrobial natural products: an update on future antibiotic drug candidates. Natural Product Reports, 27 (2): 238-254.
  • Santos IPD, Silva LCND, Silva MVD, Araújo JMD, Cavalcanti MDS, & Lima VLDM, 2015. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Frontiers in Microbiology, 6, 350.
  • Simoes M, Simoes LC, & Vieira MJ, 2010. A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43 (4): 573-583.
  • Song X, Xia YX, He ZD, & Zhang HJ, 2018. A Review of Natural Products with Anti-biofilm Activity. Current Organic Chemistry, 22 (8): 789-817.
  • Stojanoski N, 1999. Development of health culture in Veles and its region from the past to the end of the 20th century. Veles: Society of Science and Art, 13-34.
  • Svahn KS, Göransson U, El-Seedi H, Bohlin L, Larsson DJ, Olsen B, & Chryssanthou E, 2012. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment. Infection Ecology & Epidemiology, 2 (1): 11591.
  • Wang J, Nong XH, Zhang XY, Xu XY, Amin M, & Qi SH, 2017. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. Journal of Microbiology and Biotechnology, 27 (6): 1078-1089.
  • Zhang Z, Schwartz S, Wagner L, and Miller W, 2000, "A greedy algorithm for aligning DNA sequences", Journal of Computational Biology, 7 (1-2): 203-14.
There are 26 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Authors

Ayşe Üstün This is me 0000-0002-4723-052X

Ayşenur Yazıcı 0000-0002-3369-6791

Nurcan Albayrak İskender 0000-0001-8413-3190

Serkan Örtücü 0000-0002-3180-0444

Publication Date September 1, 2019
Submission Date January 14, 2019
Acceptance Date April 12, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Üstün, A., Yazıcı, A., Albayrak İskender, N., Örtücü, S. (2019). The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. Journal of the Institute of Science and Technology, 9(3), 1666-1673. https://doi.org/10.21597/jist.512652
AMA Üstün A, Yazıcı A, Albayrak İskender N, Örtücü S. The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. J. Inst. Sci. and Tech. September 2019;9(3):1666-1673. doi:10.21597/jist.512652
Chicago Üstün, Ayşe, Ayşenur Yazıcı, Nurcan Albayrak İskender, and Serkan Örtücü. “The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1666-73. https://doi.org/10.21597/jist.512652.
EndNote Üstün A, Yazıcı A, Albayrak İskender N, Örtücü S (September 1, 2019) The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. Journal of the Institute of Science and Technology 9 3 1666–1673.
IEEE A. Üstün, A. Yazıcı, N. Albayrak İskender, and S. Örtücü, “The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum”, J. Inst. Sci. and Tech., vol. 9, no. 3, pp. 1666–1673, 2019, doi: 10.21597/jist.512652.
ISNAD Üstün, Ayşe et al. “The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1666-1673. https://doi.org/10.21597/jist.512652.
JAMA Üstün A, Yazıcı A, Albayrak İskender N, Örtücü S. The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. J. Inst. Sci. and Tech. 2019;9:1666–1673.
MLA Üstün, Ayşe et al. “The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1666-73, doi:10.21597/jist.512652.
Vancouver Üstün A, Yazıcı A, Albayrak İskender N, Örtücü S. The Evaluation of Antimicrobial and Antibiofilm Activity of Bioactive Compounds Obtained from Aspergillus Sclerotiorum. J. Inst. Sci. and Tech. 2019;9(3):1666-73.