Research Article
BibTex RIS Cite

Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications

Year 2019, Volume: 9 Issue: 4, 2181 - 2189, 01.12.2019
https://doi.org/10.21597/jist.534542

Abstract

Calcium phosphate (CaP) based bioceramics are frequently used in dental and orthopedic field as bone grafts due to their chemical and structural similarities to the human hard tissues. Strontium (Sr2+), fluoride (F−) and chloride (Cl-) ions are known to play important role in bone and tooth microstructure. The aim of this study was to combine tri-calcium phosphates doped with strontium, chloride and fluoride ions. A precipitation procedure was applied for synthesizing pure and doped tri-calcium phosphates. The undoped and doped samples were sintered at 1100°C for 1 h. Incorporation of the strontium (Sr+2) and chloride (Cl-) ions decreased the density of the samples while, the fluoride (F-) co-doped densities increased with respect to pure TCP. The XRD results revealed the existence of the α-TCP and β-TCP phases. SEM results confirmed the sintering temperature and amount of dopants had prominent effect on the grain sizes of the samples.

Supporting Institution

Van Yuzuncu Yil University

Project Number

BAP-FYL-2016-5431

Thanks

The author wish to acknowledge the funding from Van Yuzuncu Yil University, Scientific Research Projects Unit (The Project Code: BAP-FYL-2016-5431).

References

  • Bose S, Fielding G, Tarafder S, and Bandyopadhyay A, 2013. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol, 31: 594-605.
  • Carrodeguas RG, De Aza S, 2011. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater, 7: 3536–3546.
  • Cheng K, Weng W, Wang H, Zhang S, 2005. In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials, 26: 6288-95.
  • Gross K, Rodriguez-Lorenzo LM, 2004. Sintered hydroxyfluorapatites: II. Mechanical properties of solid solutions determined by mcroidentation. Biomaterials, 25: 1385-94.
  • Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ, 1996. Strontium increases vertebral bone volüme in rats at low dose that does not induce detectable mineralization defect. Bone,18: 253-9.
  • Kannan S, Goetz‐Neunhoeffer F, Neubauer J, Ferreira JMF, 2008. Ionic substitutions in biphasic hydroxyapatite and β‐tricalcium phosphate mixtures: structural analysis by Rietveld refinement. Journal of the American Ceramic Society, 91: 1-12.
  • Kannan S, Rocha JHG, Ferreira JMF, 2006. Synthesis of hydroxychlorapatites solid solutions. Mater. Lett. 60: 864-868.
  • Kutbay I, Yilmaz B, Evis Z, Usta M, 2014. Effect of calcium fluoride on mechanical behavior and sinterability of nano-hydroxyapatite and titania composites. Ceramics International, 40: 14817-14826.
  • LeGeros R, Z, 2002. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopedics and related research, 395: 81-98.
  • LeGeros RZ, 2008. Calcium phosphate-based osteoinductive materials. Chemical reviews, 108: 4742-4753.
  • Metseger D, Rieger RM, and Foreman DW, 1999. Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. Journal of materials science. Materials in medicine, 10: 9-17.
  • Nakade O, Koyama H, Arai J, Ariji H, Takada J, Kaku T,1999. Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro. Arch. Oral Biol., 44: 89-92.
  • Taktak R, Elghazel A, Bouaziz J, Charfi S, Keskes H, 2018. Tricalcium phosphate fluorapatite as bone tissue engineering: evaluation of bioactivity and biocompatibility. Mater. Sci. Eng. C, 86: 121–128.
  • Park JB, Lakes RS, 1992. Characterization of Materials I. Biomaterials, Springer-Verlag New York, 29-62.
  • Ramesh S, 2000. Grain Size- Properties Correlation in Polycrystalline Hydroxyapatite Bioceramic, Malaysian Journal of Chemistry, 3: 0035 – 0040.
  • Suchanek W, Yashima M, Kakihana M, and Yoshimura M, 1996. Processing and Mechanical Properties of Hydroxyapatite Reinforced with Hydroxyapatite Whiskers, Biomaterials 17: 1715-1723.
  • Verberckmoes SC, 2004. Effects of strontium on the phsicochemical characteristics of hydroxyapatite. Calcified Tissue Int. 75: 405-15.
  • Zhao J, Dong X, Bian M, 2014, Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Appl. Surf. Sci. 1026-1033.

Kemik İmplant Uygulamalarında Kullanılmak Üzere Çeşitli İyonlar Eklenmiş Nano-Trikalsiyum Fosfatların Üretimi ve Karakterizasyonu

Year 2019, Volume: 9 Issue: 4, 2181 - 2189, 01.12.2019
https://doi.org/10.21597/jist.534542

Abstract

Diş ve ortopedik protezlerin üretiminde kalsiyum fosfat (CaP) bazlı biyoseramikler sıklıkla kullanılmaktadır. Özellikle, kemiğin kimyasal ve yapısal benzerliklerinden dolayı tercih edilmektedirler. Stronsiyum (Sr2+), florür (F−) ve klorür (Cl-) iyonlarının kemik ve dişlerin metabolizmasında ve yapısında önemli rol oynadığı bilinmektedir. Bu çalışmanın amacı stronsiyum, klorür ve florür iyonları ile katkılandırılmış tri-kalsiyum fosfatların üretilmesidir. Saf ve katkılandırılmış tri-kalsiyum fosfatlar çöktürme yöntemi kullanılarak sentezlenmiştir. Katkısız ve katkılandırılmış numuneler 1 saat süresince 1100°C ‘de sinterlenmiştir. Stronsiyum (Sr+2) ve klorürün (Cl-) ilavesi ile numunelerin yoğunluğunu azalırken, florür (F-) miktarının artmasıyla numunelerin yoğunluklarında artış gözlemlenmiştir. XRD sonuçları α-TCP ve β-TCP fazlarının varlığını ortaya koymuştur. SEM görüntüleri sinterleme sıcaklığının ve katkılandırılan iyon miktarlarının numuneler üzerindeki tane büyüklüklerine anlamlı bir etkiye sahip olduğunu doğrulamaktadır.

Project Number

BAP-FYL-2016-5431

References

  • Bose S, Fielding G, Tarafder S, and Bandyopadhyay A, 2013. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol, 31: 594-605.
  • Carrodeguas RG, De Aza S, 2011. α-Tricalcium phosphate: synthesis, properties and biomedical applications. Acta Biomater, 7: 3536–3546.
  • Cheng K, Weng W, Wang H, Zhang S, 2005. In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials, 26: 6288-95.
  • Gross K, Rodriguez-Lorenzo LM, 2004. Sintered hydroxyfluorapatites: II. Mechanical properties of solid solutions determined by mcroidentation. Biomaterials, 25: 1385-94.
  • Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ, 1996. Strontium increases vertebral bone volüme in rats at low dose that does not induce detectable mineralization defect. Bone,18: 253-9.
  • Kannan S, Goetz‐Neunhoeffer F, Neubauer J, Ferreira JMF, 2008. Ionic substitutions in biphasic hydroxyapatite and β‐tricalcium phosphate mixtures: structural analysis by Rietveld refinement. Journal of the American Ceramic Society, 91: 1-12.
  • Kannan S, Rocha JHG, Ferreira JMF, 2006. Synthesis of hydroxychlorapatites solid solutions. Mater. Lett. 60: 864-868.
  • Kutbay I, Yilmaz B, Evis Z, Usta M, 2014. Effect of calcium fluoride on mechanical behavior and sinterability of nano-hydroxyapatite and titania composites. Ceramics International, 40: 14817-14826.
  • LeGeros R, Z, 2002. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopedics and related research, 395: 81-98.
  • LeGeros RZ, 2008. Calcium phosphate-based osteoinductive materials. Chemical reviews, 108: 4742-4753.
  • Metseger D, Rieger RM, and Foreman DW, 1999. Mechanical properties of sintered hydroxyapatite and tricalcium phosphate ceramic. Journal of materials science. Materials in medicine, 10: 9-17.
  • Nakade O, Koyama H, Arai J, Ariji H, Takada J, Kaku T,1999. Stimulation by low concentrations of fluoride of the proliferation and alkaline phosphatase activity of human dental pulp cells in vitro. Arch. Oral Biol., 44: 89-92.
  • Taktak R, Elghazel A, Bouaziz J, Charfi S, Keskes H, 2018. Tricalcium phosphate fluorapatite as bone tissue engineering: evaluation of bioactivity and biocompatibility. Mater. Sci. Eng. C, 86: 121–128.
  • Park JB, Lakes RS, 1992. Characterization of Materials I. Biomaterials, Springer-Verlag New York, 29-62.
  • Ramesh S, 2000. Grain Size- Properties Correlation in Polycrystalline Hydroxyapatite Bioceramic, Malaysian Journal of Chemistry, 3: 0035 – 0040.
  • Suchanek W, Yashima M, Kakihana M, and Yoshimura M, 1996. Processing and Mechanical Properties of Hydroxyapatite Reinforced with Hydroxyapatite Whiskers, Biomaterials 17: 1715-1723.
  • Verberckmoes SC, 2004. Effects of strontium on the phsicochemical characteristics of hydroxyapatite. Calcified Tissue Int. 75: 405-15.
  • Zhao J, Dong X, Bian M, 2014, Solution combustion method for synthesis of nanostructured hydroxyapatite, fluorapatite and chlorapatite. Appl. Surf. Sci. 1026-1033.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Serap Güngör Koç 0000-0002-4547-0642

Redar Wasurahman Ahmed This is me 0000-0001-7375-4178

Project Number BAP-FYL-2016-5431
Publication Date December 1, 2019
Submission Date March 1, 2019
Acceptance Date July 15, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite

APA Güngör Koç, S., & Ahmed, R. W. (2019). Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications. Journal of the Institute of Science and Technology, 9(4), 2181-2189. https://doi.org/10.21597/jist.534542
AMA Güngör Koç S, Ahmed RW. Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications. J. Inst. Sci. and Tech. December 2019;9(4):2181-2189. doi:10.21597/jist.534542
Chicago Güngör Koç, Serap, and Redar Wasurahman Ahmed. “Fabrication and Characterization of Nano-TCP Doped With Various Ions for Bone Implant Applications”. Journal of the Institute of Science and Technology 9, no. 4 (December 2019): 2181-89. https://doi.org/10.21597/jist.534542.
EndNote Güngör Koç S, Ahmed RW (December 1, 2019) Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications. Journal of the Institute of Science and Technology 9 4 2181–2189.
IEEE S. Güngör Koç and R. W. Ahmed, “Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications”, J. Inst. Sci. and Tech., vol. 9, no. 4, pp. 2181–2189, 2019, doi: 10.21597/jist.534542.
ISNAD Güngör Koç, Serap - Ahmed, Redar Wasurahman. “Fabrication and Characterization of Nano-TCP Doped With Various Ions for Bone Implant Applications”. Journal of the Institute of Science and Technology 9/4 (December 2019), 2181-2189. https://doi.org/10.21597/jist.534542.
JAMA Güngör Koç S, Ahmed RW. Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications. J. Inst. Sci. and Tech. 2019;9:2181–2189.
MLA Güngör Koç, Serap and Redar Wasurahman Ahmed. “Fabrication and Characterization of Nano-TCP Doped With Various Ions for Bone Implant Applications”. Journal of the Institute of Science and Technology, vol. 9, no. 4, 2019, pp. 2181-9, doi:10.21597/jist.534542.
Vancouver Güngör Koç S, Ahmed RW. Fabrication and Characterization of Nano-TCP Doped with Various Ions for Bone Implant Applications. J. Inst. Sci. and Tech. 2019;9(4):2181-9.