Research Article
BibTex RIS Cite

Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi

Year 2019, Volume: 9 Issue: 4, 2225 - 2234, 01.12.2019
https://doi.org/10.21597/jist.561197

Abstract

Günümüzde nanopartiküller farklı alanlarda etkin bir şekilde kullanılmaktadır. İlk zamanlar nanopartiküllerin sentezinde fiziksel ve kimyasal yöntemler kullanılmaktaydı. Kimyasal olarak sentezlenmiş nanoparçacıkların toksik etkisinin üstesinden gelmek için biyosentez (yeşil sentez) bir alternatif olarak ortaya çıkmıştır. Bu çalışmada, Afrika menekşesinin (Saintpaulia) yaprak özütü ile gümüş nanopartiküllerin (AgNP’lerin) yeşil sentezi gerçekleştirilerek karakterizasyonu yapılmıştır. Karakterizasyon sonucunda ~432 nm dalga boyunda spektrum gösteren, 40.4 nm büyüklüğünde küresel boyutta nanopartiküllerin oluştuğu belirlenmiştir. AgNP’lerin dört Gram-pozitif ve dört Gram-negatif bakteri suşlarına karşı antibakteriyel ve biyofilm inhibisyon aktiviteleri belirlenmiştir. 10 mM konsantrasyonda gümüş nanopartiküller tüm bakteri suşlarına karşı bakteriyosidal etki göstermiştir. Antibiyofilm aktivitesi çalışmasında ise en yüksek inhibisyon yüzdesi 10 mM konsantrasyonda %80.3 oranında Salmonella infantis suşuna karşı elde edilmiştir.

Supporting Institution

Bartın Üniversitesi

References

  • Ahamed M, AlSalhi MS, Siddiqui MKJ, 2009. Silver nanoparticle applications and human health. Clinica Chimica Acta, 411 (23-24): 1841-1848.
  • Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P, Kalaiselvi S, Sankarganesh A, Balasundaram A, Masilamani V and Achiraman S, 2013. Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids and Surfaces B: Biointerfaces, 109: 20-24.
  • Arora S, Jain J, Rajwade JM, & Paknikar KM, 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236 (3): 310-318.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A, 2009. Green synthesis of Silver Nanoparticles Using Latex Of Jatropla curas. Colloids Surfaces A: Physicochemical and Engineering Aspects, b339: 134-139.
  • Chaloupka K, Malam Y, & Seifalian AM, 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in biotechnology, 28 (11): 580-588.
  • Chen X, & Schluesener HJ, 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letters, 176 (1): 1-12.
  • Colvin VL, 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology. 21: 1166–1170.
  • Dipankar C, Murugan S, 2012. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surfaces B: Biointerfaces, 98: 112–119.
  • Feng QL, Wu j, Chen GQ, Cui FZ, Kim TN, Kim JO, 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52 (4): 662-668.
  • Gao X, Yourick JJ, Topping VD, Black T, Olejnik N, Keltner Z, Sprando RL, 2015. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicol. Reports, 2: 341–350.
  • Gerber C, Lang HP, 2006. How the doors to the nano-world were opened. Nature Nanotechnology, 1 (1): 3.
  • Gurunathan S, Han JW, Kwon D-N, Kim J-H, 2014. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Research Letters, 9: 373.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH, 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74: 328–335.
  • Jeong SH, Yeo SY, Yi SC, 2005. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers, Journal of Materials Science, 40: 5407–5411.
  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ, 2007. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 19: 857–871.
  • Jyoti K, Baunthiyal M, Singh A, 2016. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9: 217-227.
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S, 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis, Colloids and Surfaces B: Biointerfaces, 79: 340–344.
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, & Ryu, DY, 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro, 23 (6): 1076-1084.
  • Kim WY, Kim J, Park JD, Ryu HY, Yu IJ, 2009. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. Journal of Toxicology and Environmental Health, Part A, 72: 1279–128.
  • Korani M, Rezayat SM, Bidgoli SA, 2013. Sub-chronic Dermal Toxicity of Silver Nanoparticles in Guinea Pig:Special Emphasis to Heart, Bone and Kidney Toxicities. Iranian Journal of Pharmaceutical Research, 12: 511–519.
  • Korbekandi H, Ashari Z, Iravani S, Abbasi S, 2013. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iranian Journal of Pharmaceutical Research, 12: 289–298.
  • Kumar M.A, Anandapandian KTK., Parthiban K, 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Brazilian Archives of Biology and Technology. 54 (2): 259-265.
  • Lee KS, El-Sayed MA, 2006. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape,and metal composition. The Journal of Physical Chemistry B, 110: 19220–19225.
  • Lee HY, Park HK, Lee M, Kim K, Park S.B, 2007. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chemical Communications, 28: 2959-2961.
  • Li L, Hu J, Yang W, Alivisatos AP, 2001. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Letters, 1: 349–351.
  • Mathur A, Kushwaha A, Dalakoti V, Dalakoti G.&Singh DS, 2014. Green synthesis of silver nanoparticles using medicinal plant and its characterization. Der Pharmacia Lettre, 5: 118–122.
  • Namratha N, and Monica PV, 2013. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian J. Pharm. Tech., 3 (4): 170-174.
  • Nel A, Xia T, Madler L, Li N, 2006. Toxic potential of materials at the nanolevel. Science, 311: 622–627.
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH, 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32 (36): p.9810-9817.
  • Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya VL, & Jadhao SB, 2013. Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PloS one, 8 (2): e57094, 1-10.
  • Reg Bott T, 2011. Biofilms in Industry, in: Ind. Biofouling, 1st ed., Elsevier, 181–201.
  • Russell AD, Hugo WB, 1994. Antimicrobial Activity and Action of Silver, Progress in Medicinal Chemistry, 31: 351–370.
  • Saini J, Kashyap D, Batra B, Kumar S, Kumar R, & Malik, DK, 2013. Green synthesis of silver nanoparticles by using Neem (Azadirachta indica) and Amla (Phyllanthus emblica) leaf Extract. Indian Journal of Applied Research, 3 (5): 209-210.
  • Shankar SS, Ahmad A, & Sastry M, 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 19 (6): 1627-1631.
  • Sharma VK, Yngard RA, Lin Y, 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145: 83–96.
  • Singh N, Manshian B, Jenkins GJS, 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30: 3891–3914.
  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP, 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13 (7): 2981-2988.
  • Sukdeb P, Yu KT, Joon MS, 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73 (6): 1712-1720.
  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, & Dhanaraj SA, 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15 (2): 113-120.
  • Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, & Thirumurugan R, 2013. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439: 184-192.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RJ, 2007. Functional finishing of cotton fabrics using silver nanoparticles. Journal of Nanoscience and Nanotechnology, 7: 1893–1897.
  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, & Arenas-Alatorre JA, 2008. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62 (17-18): 3103-3105.
  • Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong TM, 2007. Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. Journal of Nanoparticle Research, 9: 23–38.

Antibacterial Activity and Biofilm Property of Silver Nanoparticles Synthesized by Using Saintpaulia Aqueous Leaf Extract

Year 2019, Volume: 9 Issue: 4, 2225 - 2234, 01.12.2019
https://doi.org/10.21597/jist.561197

Abstract

Today, nanoparticles are effectively used in different areas. Initially, physical and chemical methods were used in the synthesis of nanoparticles. Biosynthesis (green synthesis) has emerged as an alternative to overcome the toxic effect of chemically synthesized nanoparticles. In this study, green synthesis of silver nanoparticles (AgNPs) with the leaf extract of African violet plant (Saintpaulia) was carried out. As a result of the characterization, it was determined that nanoparticles were formed at a spherical size of 40.4 nm with a spectrum showing a spectrum at a wavelength of 432 nm. Antibacterial and biofilm inhibition activities of AgNPs against four Gram-positive and four Gramnegative were determined with bacterial strains. Silver nanoparticles at 10 mM concentration showed bacteriocidal activity against all bacterial strains. In the antibiotic activity study, the highest inhibition percentage was obtained against the Salmonella infantis strain at 80.3% at a concentration of 10 mM.

References

  • Ahamed M, AlSalhi MS, Siddiqui MKJ, 2009. Silver nanoparticle applications and human health. Clinica Chimica Acta, 411 (23-24): 1841-1848.
  • Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P, Kalaiselvi S, Sankarganesh A, Balasundaram A, Masilamani V and Achiraman S, 2013. Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids and Surfaces B: Biointerfaces, 109: 20-24.
  • Arora S, Jain J, Rajwade JM, & Paknikar KM, 2009. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells. Toxicology and Applied Pharmacology, 236 (3): 310-318.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A, 2009. Green synthesis of Silver Nanoparticles Using Latex Of Jatropla curas. Colloids Surfaces A: Physicochemical and Engineering Aspects, b339: 134-139.
  • Chaloupka K, Malam Y, & Seifalian AM, 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in biotechnology, 28 (11): 580-588.
  • Chen X, & Schluesener HJ, 2008. Nanosilver: a nanoproduct in medical application. Toxicology Letters, 176 (1): 1-12.
  • Colvin VL, 2003. The potential environmental impact of engineered nanomaterials. Nature Biotechnology. 21: 1166–1170.
  • Dipankar C, Murugan S, 2012. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surfaces B: Biointerfaces, 98: 112–119.
  • Feng QL, Wu j, Chen GQ, Cui FZ, Kim TN, Kim JO, 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52 (4): 662-668.
  • Gao X, Yourick JJ, Topping VD, Black T, Olejnik N, Keltner Z, Sprando RL, 2015. Toxicogenomic study in rat thymus of F1 generation offspring following maternal exposure to silver ion. Toxicol. Reports, 2: 341–350.
  • Gerber C, Lang HP, 2006. How the doors to the nano-world were opened. Nature Nanotechnology, 1 (1): 3.
  • Gurunathan S, Han JW, Kwon D-N, Kim J-H, 2014. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria, Nanoscale Research Letters, 9: 373.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH, 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74: 328–335.
  • Jeong SH, Yeo SY, Yi SC, 2005. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers, Journal of Materials Science, 40: 5407–5411.
  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ, 2007. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 19: 857–871.
  • Jyoti K, Baunthiyal M, Singh A, 2016. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9: 217-227.
  • Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S, 2010. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis, Colloids and Surfaces B: Biointerfaces, 79: 340–344.
  • Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, & Ryu, DY, 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro, 23 (6): 1076-1084.
  • Kim WY, Kim J, Park JD, Ryu HY, Yu IJ, 2009. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. Journal of Toxicology and Environmental Health, Part A, 72: 1279–128.
  • Korani M, Rezayat SM, Bidgoli SA, 2013. Sub-chronic Dermal Toxicity of Silver Nanoparticles in Guinea Pig:Special Emphasis to Heart, Bone and Kidney Toxicities. Iranian Journal of Pharmaceutical Research, 12: 511–519.
  • Korbekandi H, Ashari Z, Iravani S, Abbasi S, 2013. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum. Iranian Journal of Pharmaceutical Research, 12: 289–298.
  • Kumar M.A, Anandapandian KTK., Parthiban K, 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Brazilian Archives of Biology and Technology. 54 (2): 259-265.
  • Lee KS, El-Sayed MA, 2006. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape,and metal composition. The Journal of Physical Chemistry B, 110: 19220–19225.
  • Lee HY, Park HK, Lee M, Kim K, Park S.B, 2007. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chemical Communications, 28: 2959-2961.
  • Li L, Hu J, Yang W, Alivisatos AP, 2001. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Letters, 1: 349–351.
  • Mathur A, Kushwaha A, Dalakoti V, Dalakoti G.&Singh DS, 2014. Green synthesis of silver nanoparticles using medicinal plant and its characterization. Der Pharmacia Lettre, 5: 118–122.
  • Namratha N, and Monica PV, 2013. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian J. Pharm. Tech., 3 (4): 170-174.
  • Nel A, Xia T, Madler L, Li N, 2006. Toxic potential of materials at the nanolevel. Science, 311: 622–627.
  • Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briedé JJ, van Loveren H, de Jong WH, 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32 (36): p.9810-9817.
  • Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya VL, & Jadhao SB, 2013. Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PloS one, 8 (2): e57094, 1-10.
  • Reg Bott T, 2011. Biofilms in Industry, in: Ind. Biofouling, 1st ed., Elsevier, 181–201.
  • Russell AD, Hugo WB, 1994. Antimicrobial Activity and Action of Silver, Progress in Medicinal Chemistry, 31: 351–370.
  • Saini J, Kashyap D, Batra B, Kumar S, Kumar R, & Malik, DK, 2013. Green synthesis of silver nanoparticles by using Neem (Azadirachta indica) and Amla (Phyllanthus emblica) leaf Extract. Indian Journal of Applied Research, 3 (5): 209-210.
  • Shankar SS, Ahmad A, & Sastry M, 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress, 19 (6): 1627-1631.
  • Sharma VK, Yngard RA, Lin Y, 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145: 83–96.
  • Singh N, Manshian B, Jenkins GJS, 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30: 3891–3914.
  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP, 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13 (7): 2981-2988.
  • Sukdeb P, Yu KT, Joon MS, 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73 (6): 1712-1720.
  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, & Dhanaraj SA, 2011. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15 (2): 113-120.
  • Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, & Thirumurugan R, 2013. A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439: 184-192.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RJ, 2007. Functional finishing of cotton fabrics using silver nanoparticles. Journal of Nanoscience and Nanotechnology, 7: 1893–1897.
  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, & Arenas-Alatorre JA, 2008. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62 (17-18): 3103-3105.
  • Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong TM, 2007. Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts. Journal of Nanoparticle Research, 9: 23–38.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Authors

Nesrin Korkmaz 0000-0002-7896-1042

Publication Date December 1, 2019
Submission Date May 7, 2019
Acceptance Date July 22, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite

APA Korkmaz, N. (2019). Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi. Journal of the Institute of Science and Technology, 9(4), 2225-2234. https://doi.org/10.21597/jist.561197
AMA Korkmaz N. Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi. J. Inst. Sci. and Tech. December 2019;9(4):2225-2234. doi:10.21597/jist.561197
Chicago Korkmaz, Nesrin. “Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel Ve Antibiyofilm Aktivitesi”. Journal of the Institute of Science and Technology 9, no. 4 (December 2019): 2225-34. https://doi.org/10.21597/jist.561197.
EndNote Korkmaz N (December 1, 2019) Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi. Journal of the Institute of Science and Technology 9 4 2225–2234.
IEEE N. Korkmaz, “Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi”, J. Inst. Sci. and Tech., vol. 9, no. 4, pp. 2225–2234, 2019, doi: 10.21597/jist.561197.
ISNAD Korkmaz, Nesrin. “Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel Ve Antibiyofilm Aktivitesi”. Journal of the Institute of Science and Technology 9/4 (December 2019), 2225-2234. https://doi.org/10.21597/jist.561197.
JAMA Korkmaz N. Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi. J. Inst. Sci. and Tech. 2019;9:2225–2234.
MLA Korkmaz, Nesrin. “Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel Ve Antibiyofilm Aktivitesi”. Journal of the Institute of Science and Technology, vol. 9, no. 4, 2019, pp. 2225-34, doi:10.21597/jist.561197.
Vancouver Korkmaz N. Saintpaulia Sulu Yaprak Özütü Kullanılarak Sentezlenen Gümüş Nanopartiküllerin Antibakteriyel ve Antibiyofilm Aktivitesi. J. Inst. Sci. and Tech. 2019;9(4):2225-34.