Research Article
BibTex RIS Cite

Sulu ve Sulu Olmayan Elektrolitlerde Tavlanmış Yüksek Karbonlu Çeliğin Elektrokimyasal Kapasitansı

Year 2019, Volume: 9 Issue: 4, 2097 - 2104, 01.12.2019
https://doi.org/10.21597/jist.597192

Abstract

Yüksek karbonlu çelik 400 °C, 600 °C ve 800 °C sıcaklıktaki fırında 30 dakika süreyle ısıl işleme tabi tutuldu. Tavlanmış ve tavlanmamış yüksek karbonlu çeliklerin, farklı tavlama sıcaklıklarına bağlı olarak elektrokimyasal davranışlarını anlamak için sulu (KOH ve Na2S04) ve susuz (Reline adı verilen kolin klorür ve üre bazlı iyonik sıvı) elektrolitler içerisine daldırıldı. Isıl işlem görmüş ve görmemiş yüksek karbonlu çeliklerin alan kapasitansı uygulanan yüksek sıcaklıklara göre hesaplanmıştır. Termal oksidasyondan sonra yüksek karbonlu çeliğin pürüzlülüğü artmıştır. Mevcut yoğunluk ve spesifik kapasitans, KOH elektrolitinde şarj/deşarj edilen yüksek karbon çeliğinin tavlama sıcaklığının artması üzerine artmıştır. 800 °C'de ısıl işlem görmüş çeliğin kapasitansı KOH'daki tavlanmamış çelikten 50 kat daha büyüktü. Na2SO4'te taranan yüksek karbonlu çeliğin alan kapasitansı tavlama sıcaklığı yükseldikçe artmıştır. Yüksek sıcaklıkta tavlanan çeliğin Na2SO4'taki spesifik kapasitansı, KOH ve Reline elektrolitinde olduğundan daha büyüktü. Tavlanmamış ve 400 °C'de tavlanmış yüksek karbonlu çeliklerin Reline iyonik sıvısında elektrokimyasal olarak etkin olmamasına rağmen, 600 °C'de ve 800 °C'de işlenen çeliğin Reline'daki spesifik kapasitansı önemli ölçüde artmıştır. Reline, Na2SO4 ve KOH süper kapasitör elektroliti olarak tavlanmış yüksek karbonlu çeliklerle rahatlıkla kullanılabilir.

References

  • Chen RY, Yeun WYD, 2003. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of metals, 59(5–6): 433–68.
  • Chodankar NR, Dubal DP, Kwon Y, Kim DH, 2017. Direct growth of FeCo 2 O 4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Materials, 9(8): e419.
  • Daramola OO, Adewuyi BO, Oladele IO, 2015. Effects of Heat Treatment on the Mechanical Properties of Rolled Medium Carbon Steel. Journal of Minerals and Materials Characterization and Engineering, 09(08): 693–708.
  • Fang XX, Zhou HZ, Xue YJ, 2015. Corrosion properties of stainless steel 316L/Ni–Cu–P coatings in warm acidic solution. Transactions of Nonferrous Metals Society of China, 25(8): 2594-2600.
  • Hsu TY, Xu ZY, 2007. Design of Structure, Composition and Heat Treatment Process for High Strength Steel. In Materials Science Forum, Trans Tech Publ, 2283–86.
  • Isfahany AN, Saghafian H, Borhani G, 2011. The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel. Journal of Alloys and Compounds, 509(9): 3931–36.
  • Kao AS, Kuhn HA, Spitzig WA, Richmond O, 1990. Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides. Journal of Engineering Materials and Technology, 112(1), 26-30.
  • Kosturek R, Najwer M, Nieslony P, Wachowski M, 2018. Effect of Heat Treatment on Mechanical Properties of Inconel 625/Steel P355NH Bimetal Clad Plate Manufactured by Explosive Welding. In Advances in Manufacturing, Springer, 681–86.
  • Krauss G, 2015. Steels: Processing, Structure, and Performance. Asm International. Ohio, the USA
  • Lesuer DR, Syn CK, Goldberg A, Wadsworth J, Sherby OD, 1993. The case for ultrahigh-carbon steels as structural materials. JOM, 45(8), 40-46.
  • Movahed P, Kolahgar S, Marashi SPH, Pouranvari M, Parvin N, 2009. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Materials Science and Engineering: A, 518(1-2), pp.1-6.
  • Oberg E, Jones FD, Horton HL, Ruffle HH, 2008. Machinery’s Handbook 28th Edition. Industrial Press Inc. New York
  • Osório WR, Peixoto LC, Garcia LR, Garcia A, 2009. Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution.”Materials and Corrosion, 60(10): 804–12.
  • Singh R, 2015. Applied Welding Engineering: Processes, Codes, and Standards. 2nd Edition, Butterworth-Heinemann. Oxford, UK
  • Smith EL, Abbott AP, Ryder KS, 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21): 11060–82.
  • Totten GE, 2006. Steel Heat Treatment: Metallurgy and Technologies. 2nd Edition, CRC press. Oregon, the USA

Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes

Year 2019, Volume: 9 Issue: 4, 2097 - 2104, 01.12.2019
https://doi.org/10.21597/jist.597192

Abstract

High-carbon steel was heat treated in a furnace at 400
ᵒC, 600 ᵒC and 800 ᵒC for 30 minutes. Annealed and non-annealed high carbon
steels were immersed in aqueous (KOH and Na2SO4) and
non-aqueous (choline chloride and urea based ionic liquid called Reline) electrolyte
in order to understand their electrochemical behavior depending on different annealing
temperatures. Areal capacitance of heat treated and non-heat treated high
carbon steel was calculated based on applied elevated temperatures. Roughness
of high-carbon steel increased after thermal oxidation.  The current density and specific capacitance increased
upon increasing annealing temperature of high carbon steel charged/discharged
in KOH electrolyte. The capacitance of steel heat-treated at 800 ᵒC was 50
times greater than that of non-annealed steel in KOH. The areal capacitance of high-carbon
steel scanned in Na2SO4 increased as annealing
temperature increased. The specific capacitance of steel annealed at high
temperature in Na2SO4 was greater than that in KOH and in
Reline electrolyte.  Although
non-annealed and 400 ᵒC annealed high carbon steel was electrochemically
inactive in Reline ionic liquid, the specific capacitance of steel treated at
600 ᵒC and 800 ᵒC increased significantly in Reline. Reline, Na2SO4
and KOH could be used conveniently as supercapacitor electrolyte with annealed high-carbon
steels.

References

  • Chen RY, Yeun WYD, 2003. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of metals, 59(5–6): 433–68.
  • Chodankar NR, Dubal DP, Kwon Y, Kim DH, 2017. Direct growth of FeCo 2 O 4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Materials, 9(8): e419.
  • Daramola OO, Adewuyi BO, Oladele IO, 2015. Effects of Heat Treatment on the Mechanical Properties of Rolled Medium Carbon Steel. Journal of Minerals and Materials Characterization and Engineering, 09(08): 693–708.
  • Fang XX, Zhou HZ, Xue YJ, 2015. Corrosion properties of stainless steel 316L/Ni–Cu–P coatings in warm acidic solution. Transactions of Nonferrous Metals Society of China, 25(8): 2594-2600.
  • Hsu TY, Xu ZY, 2007. Design of Structure, Composition and Heat Treatment Process for High Strength Steel. In Materials Science Forum, Trans Tech Publ, 2283–86.
  • Isfahany AN, Saghafian H, Borhani G, 2011. The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel. Journal of Alloys and Compounds, 509(9): 3931–36.
  • Kao AS, Kuhn HA, Spitzig WA, Richmond O, 1990. Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides. Journal of Engineering Materials and Technology, 112(1), 26-30.
  • Kosturek R, Najwer M, Nieslony P, Wachowski M, 2018. Effect of Heat Treatment on Mechanical Properties of Inconel 625/Steel P355NH Bimetal Clad Plate Manufactured by Explosive Welding. In Advances in Manufacturing, Springer, 681–86.
  • Krauss G, 2015. Steels: Processing, Structure, and Performance. Asm International. Ohio, the USA
  • Lesuer DR, Syn CK, Goldberg A, Wadsworth J, Sherby OD, 1993. The case for ultrahigh-carbon steels as structural materials. JOM, 45(8), 40-46.
  • Movahed P, Kolahgar S, Marashi SPH, Pouranvari M, Parvin N, 2009. The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Materials Science and Engineering: A, 518(1-2), pp.1-6.
  • Oberg E, Jones FD, Horton HL, Ruffle HH, 2008. Machinery’s Handbook 28th Edition. Industrial Press Inc. New York
  • Osório WR, Peixoto LC, Garcia LR, Garcia A, 2009. Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution.”Materials and Corrosion, 60(10): 804–12.
  • Singh R, 2015. Applied Welding Engineering: Processes, Codes, and Standards. 2nd Edition, Butterworth-Heinemann. Oxford, UK
  • Smith EL, Abbott AP, Ryder KS, 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21): 11060–82.
  • Totten GE, 2006. Steel Heat Treatment: Metallurgy and Technologies. 2nd Edition, CRC press. Oregon, the USA
There are 16 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Abdulcabbar Yavuz 0000-0002-7216-0586

Kaan Kaplan 0000-0003-0631-1961

Publication Date December 1, 2019
Submission Date July 26, 2019
Acceptance Date September 9, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite

APA Yavuz, A., & Kaplan, K. (2019). Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes. Journal of the Institute of Science and Technology, 9(4), 2097-2104. https://doi.org/10.21597/jist.597192
AMA Yavuz A, Kaplan K. Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes. J. Inst. Sci. and Tech. December 2019;9(4):2097-2104. doi:10.21597/jist.597192
Chicago Yavuz, Abdulcabbar, and Kaan Kaplan. “Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-Aqueous Electrolytes”. Journal of the Institute of Science and Technology 9, no. 4 (December 2019): 2097-2104. https://doi.org/10.21597/jist.597192.
EndNote Yavuz A, Kaplan K (December 1, 2019) Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes. Journal of the Institute of Science and Technology 9 4 2097–2104.
IEEE A. Yavuz and K. Kaplan, “Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes”, J. Inst. Sci. and Tech., vol. 9, no. 4, pp. 2097–2104, 2019, doi: 10.21597/jist.597192.
ISNAD Yavuz, Abdulcabbar - Kaplan, Kaan. “Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-Aqueous Electrolytes”. Journal of the Institute of Science and Technology 9/4 (December 2019), 2097-2104. https://doi.org/10.21597/jist.597192.
JAMA Yavuz A, Kaplan K. Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes. J. Inst. Sci. and Tech. 2019;9:2097–2104.
MLA Yavuz, Abdulcabbar and Kaan Kaplan. “Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-Aqueous Electrolytes”. Journal of the Institute of Science and Technology, vol. 9, no. 4, 2019, pp. 2097-04, doi:10.21597/jist.597192.
Vancouver Yavuz A, Kaplan K. Electrochemical Capacitance of Annealed High-Carbon Steel in Aqueous and Non-aqueous Electrolytes. J. Inst. Sci. and Tech. 2019;9(4):2097-104.