Research Article
BibTex RIS Cite

Complex-Clifford Tori and Special Complex Unitary Matrices

Year 2020, Volume: 10 Issue: 1, 601 - 608, 01.03.2020
https://doi.org/10.21597/jist.655069

Abstract

In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.

References

  • Ata E, Yayli Y, 2009. Dual quaternions and dual projective spaces. Chaos, Solitons & Fractals, 40(3), 1255-1263.
  • Bekar M, Yayli Y, 2013. Involutions of complexified quaternions and split quaternions. Advances in Applied Clifford Algebras, 23(2), 283-299.
  • Chevalley C, 1946. Theory of Lie groups Princeton Univ. Press, Princeton, NJ-USA.
  • Hamilton W R, 1844. On a new species of imaginary quantities connected with a theory of quaternions. In Proceedings of the Royal Irish Academy (Vol. 2, No. 424-434, pp. 4-1).
  • Hamilton W R, 1853. Chapter VI in: Lectures on Quaternions. Hodges and Smith, Dublin, Available online at Cornell University Library: http://historical.library.cornell.edu/math/. (Date of access: 16 June 2019).
  • Tait P G, 1890. An elementary treatise on quaternions. University Press, Michigan-USA.
  • Toth G, 1998. Glimpses of algebra and geometry. Springer Science & Business Media, NY-USA.

Complex-Clifford Tori and Special Complex Unitary Matrices

Year 2020, Volume: 10 Issue: 1, 601 - 608, 01.03.2020
https://doi.org/10.21597/jist.655069

Abstract

In this paper, parallels of latitude and meridians of longitude in S_C^3 are identified via the special complex unitary matrices 〖SU〗_C (2). It is also obtained that the third homology group of complex 2-sphere S_C^2 equal to zero.

References

  • Ata E, Yayli Y, 2009. Dual quaternions and dual projective spaces. Chaos, Solitons & Fractals, 40(3), 1255-1263.
  • Bekar M, Yayli Y, 2013. Involutions of complexified quaternions and split quaternions. Advances in Applied Clifford Algebras, 23(2), 283-299.
  • Chevalley C, 1946. Theory of Lie groups Princeton Univ. Press, Princeton, NJ-USA.
  • Hamilton W R, 1844. On a new species of imaginary quantities connected with a theory of quaternions. In Proceedings of the Royal Irish Academy (Vol. 2, No. 424-434, pp. 4-1).
  • Hamilton W R, 1853. Chapter VI in: Lectures on Quaternions. Hodges and Smith, Dublin, Available online at Cornell University Library: http://historical.library.cornell.edu/math/. (Date of access: 16 June 2019).
  • Tait P G, 1890. An elementary treatise on quaternions. University Press, Michigan-USA.
  • Toth G, 1998. Glimpses of algebra and geometry. Springer Science & Business Media, NY-USA.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Matematik / Mathematics
Authors

Hasan Es 0000-0002-7732-8173

Publication Date March 1, 2020
Submission Date December 4, 2019
Acceptance Date January 18, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Es, H. (2020). Complex-Clifford Tori and Special Complex Unitary Matrices. Journal of the Institute of Science and Technology, 10(1), 601-608. https://doi.org/10.21597/jist.655069
AMA Es H. Complex-Clifford Tori and Special Complex Unitary Matrices. J. Inst. Sci. and Tech. March 2020;10(1):601-608. doi:10.21597/jist.655069
Chicago Es, Hasan. “Complex-Clifford Tori and Special Complex Unitary Matrices”. Journal of the Institute of Science and Technology 10, no. 1 (March 2020): 601-8. https://doi.org/10.21597/jist.655069.
EndNote Es H (March 1, 2020) Complex-Clifford Tori and Special Complex Unitary Matrices. Journal of the Institute of Science and Technology 10 1 601–608.
IEEE H. Es, “Complex-Clifford Tori and Special Complex Unitary Matrices”, J. Inst. Sci. and Tech., vol. 10, no. 1, pp. 601–608, 2020, doi: 10.21597/jist.655069.
ISNAD Es, Hasan. “Complex-Clifford Tori and Special Complex Unitary Matrices”. Journal of the Institute of Science and Technology 10/1 (March 2020), 601-608. https://doi.org/10.21597/jist.655069.
JAMA Es H. Complex-Clifford Tori and Special Complex Unitary Matrices. J. Inst. Sci. and Tech. 2020;10:601–608.
MLA Es, Hasan. “Complex-Clifford Tori and Special Complex Unitary Matrices”. Journal of the Institute of Science and Technology, vol. 10, no. 1, 2020, pp. 601-8, doi:10.21597/jist.655069.
Vancouver Es H. Complex-Clifford Tori and Special Complex Unitary Matrices. J. Inst. Sci. and Tech. 2020;10(1):601-8.