Research Article
BibTex RIS Cite

Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu

Year 2020, Volume: 10 Issue: 1, 509 - 519, 01.03.2020
https://doi.org/10.21597/jist.676800

Abstract

Panel yüzey sıcaklığı PV panelin performans parametreleri üzerinde çok önemli etkiye sahiptir. Özellikle yaz aylarında görülen panel yüzey sıcaklığındaki aşırı yükselme panel veriminde ciddi düşüşlere neden olur. Bu olumsuz durum panel yüzeyi soğutularak minimize edilebilir. Bu çalışmada, hava soğutmalı PVT sistemine kanatçıklar eklendi. Kontrol parametrelerinin (panelin arka yüzey sıcaklığı, fan hızı, kanal derinliği, kanatçık konfigürasyonu, kanatçık malzemesi) panel yüzey sıcaklığına, kanatçık sıcaklığına ve çıkış sıcaklığına etkisi Taguchi Yöntemi kullanılarak incelendi ve en uygun tasarım kombinasyonu belirlendi. Ayrıca ANSYS FLUENT analizi ile elde edilen görüntüler analiz edildi. Çalışmamızda monokristal panel kullanıldı. Bakır, alüminyum ve pirinç malzemelerden yapılmış kanatçıkların sık ve seyrek konfigürasyonları için deneyler yapıldı. Panel yüzey sıcaklığı, kanatçık sıcaklığı ve çıkış sıcaklığı için en etkili parametrelerin kanatçık konfigürasyonu, fan hızı ve kanal derinliği olduğu görüldü. Optimal tasarım kombinasyonu, panel yüzey sıcaklığı için A2-B3-C2-D3-E2 olduğu, kanatçık sıcaklığı için A1-B1-C3-D2-E2 olduğu, çıkış sıcaklığı için A1-B1-C3-D2-E3 olduğu bulundu.

Supporting Institution

Atatürk Üniversitesi Bilimsel Araştırma Proje Birimi

Project Number

BAP/2015-147

Thanks

Yazarlar, Atatürk Üniversitesi Bilimsel Araştırma Proje Birimi tarafından BAP/2015-147 numaralı proje kapsamında sağlanan mali desteğe şükranlarını sunarlar.

References

  • Ali Alfegi EM, Sopian K, Othman MY, Yatim B, 2009. The effect of flow rates on the performance of finned single pass. double duct photovoltaic thermal solar air heaters. European Journal of Scientific Research. 25(2). 339-344.
  • Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT, 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews. 77: p. 109-130.
  • Bahaidarah HMS, Subhan A, Gandhidasan P, Rehman S, 2013. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy. 59: p. 445-453.
  • Bayrak F, Hamdeh NA, Alnefaie KA, Öztop HF, 2017. A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews. 74: p. 755-770.
  • Chauhan A, Tyagi V, Anand S,2018. Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Conversion and Management.163: p. 314-354.
  • Cuce E, Cuce PM, Bali T, 2013. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy. 111: p. 374-382.
  • Dubey S, Tay AAO, 2013. Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy for Sustainable Development. 17(1): p. 1-12. Elsafi AM, Gandhidasan P, 2015. Comparative study of double-pass flat and compound parabolic concentrated photovoltaic–thermal systems with and without fins. Energy Conversion and Management. 98: p. 59-68.
  • Gang P, Huide F, Tao Z, Jie J, 2011. A numerical and experimental study on a heat pipe PV/T system. Solar Energy. 85(5): p. 911-921.
  • Gaur A, Tiwari GN, 2014. Performance of a-Si thin film PV modules with and without water flow: An experimental validation. Applied Energy. 128: p. 184-191.
  • Huang BJ, Lin TH, Hung WC, Sun FS, 2001. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy.70(5):443-448.
  • Jones AD, Underwood CP, 2001. A thermal model for photovoltaic systems. Solar Energy. 70(4):p.349–359.
  • Joshi AS, Tiwari, A, 2007. Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector. Renewable Energy. 32(13): p. 2223-2241.
  • Kasaeian, AB, Akhlaghi MM, Golzari S, Dehghani M, 2013. Modeling and optimization of an air-cooled photovoltaic thermal (PV/T) system using genetic algorithm. Applied Solar Energy 49. p.215–224.
  • Kazemian A, Hosseinzadeh M, Sardarabadi M, 2018. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study. Solar Energy. 173: p. 1002-1010.
  • Kumar R, Rosen MA, 2011a. A critical review of photovoltaic–thermal solar collectors for air heating. Applied Energy. 88(11): p. 3603-3614.
  • Kumar R, Rosen MA, 2011b. Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering. 31. p.1402–1410.
  • Nadda R, Kumar A, Maithani R, 2018. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renewable Sustainable Energy Reviers. 93: p. 331-353.
  • Omer KA, Zala AM, 2018. Experimental investigation of PV/thermal collector with theoretical analysis. Renewable Energy Focus. 27: p. 67-77.
  • Özakin AN, Kaya F, 2019. Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with ANSYS Fluent. Solar Energy. 184: p. 561-569.
  • Özakin AN, Kaya F, 2020. Experimental thermodynamic analysis of air-based PVT system using fins in different materials: Optimization of control parameters by Taguchi method and ANOVA. Solar Energy. 197: p. 199-211.
  • Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Mahdavi Adeli M, 2010. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy 87. 2328–2339.
  • Shukla A, Kanta K, Sharmaa A, Biwole PH, 2017. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells. 160: p. 275-286.
  • Singh S, Agarwal S, Tiwari GN, Chauhan D, 2015a. Application of genetic algorithm with multi-objective function to improve the efficiency of glazed photovoltaic thermal system for New Delhi (India) climatic condition. Solar Energy 117: p. 153-166.
  • Singh S, Agrawal S, Avasthi DV, 2014. Optimization of design parameters of glazed hybrid photovoltaic thermal module using genetic algorithm. International Conference on ‘‘CIPECH14’’. p. 458–463.
  • Singh. S. Agrawal. S.. 2015. Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study. Energy Conv.Manag. 105: p. 763-771.
  • Singh S, Agrawal S, Tiwari A, Al-Helal I.M, Avasthi DV, 2015b. Modeling and parameter optimization of hybrid single channel photovoltaic thermal module using genetic algorithms. Solar Energy 113: p. 78-87.
  • Singh S, Agrawal S, Gadh R, 2015c. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array. Energy Conversion and Management. 105: p. 303-312.
  • Slimani MEA, Amirat M, Kurucz I, Bahria S, Hamidat A, 2017. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Conversion and Management.. 133: p. 458-476.
  • Sobhnamayan F, Sarhaddi F, Alavi MA, Farahat S, Yazdanpanahi J, 2014. Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renewable Energy. 68:p.356–65.
  • Tiwari A, Sodha MS, Chandra A, Joshi JC, 2006. Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells 90(2): p. 175-189.
  • Tiwari A, Sodha. MS, 2007. Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model. Solar Energy Materials and Solar Cells . 91:p. 17–28.
  • Wu SY, Wang T, Xiao I, Shen ZG, 2019. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Sol. Energy 180: p. 489-500.
  • Yang T, Athienitis AK, 2015. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system. Applied Energy. 159: p. 70-79.

Optimization of Control Parameters Affecting Panel Surface Temperature in Air-Cooled PVT Panels

Year 2020, Volume: 10 Issue: 1, 509 - 519, 01.03.2020
https://doi.org/10.21597/jist.676800

Abstract

Panel surface temperature has a significant effect on panel performance parameters. The tremendous increase in panel surface temperature, especially seen in the summer months, leads to significant reductions in panel efficiency. In this study, fins to the air-cooled PVT system was added. The effect of the design parameters (surface temperature of back of the panel, airflow velocity, depth of duct, fin configuration, fins materials) on the panel surface temperature, fin temperature and outlet temperature was investigated using the Taguchi Method, and the optimal design combination was determined. In addition, the images obtained by ANSYS FLUENT analysis were analyzed. In our study, monocrystalline panels were used. Experiments were conducted for the frequent and sparse configurations of the fins made of copper, aluminum and brass materials. It was observed that while most effective parameters for panel surface temperature, fin temperature and outlet temperature were the fin configuration, fan speed and duct depth. The optimal design combination was found to be A2-B3-C2-D3-E2 for panel surface temperature, A1-B1-C3-D2-E2 for fin temperature, A1-B1-C3-D2-E3 for outlet temperature.

Project Number

BAP/2015-147

References

  • Ali Alfegi EM, Sopian K, Othman MY, Yatim B, 2009. The effect of flow rates on the performance of finned single pass. double duct photovoltaic thermal solar air heaters. European Journal of Scientific Research. 25(2). 339-344.
  • Al-Waeli AHA, Sopian K, Kazem HA, Chaichan MT, 2017. Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews. 77: p. 109-130.
  • Bahaidarah HMS, Subhan A, Gandhidasan P, Rehman S, 2013. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy. 59: p. 445-453.
  • Bayrak F, Hamdeh NA, Alnefaie KA, Öztop HF, 2017. A review on exergy analysis of solar electricity production. Renewable and Sustainable Energy Reviews. 74: p. 755-770.
  • Chauhan A, Tyagi V, Anand S,2018. Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Conversion and Management.163: p. 314-354.
  • Cuce E, Cuce PM, Bali T, 2013. An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters. Applied Energy. 111: p. 374-382.
  • Dubey S, Tay AAO, 2013. Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy for Sustainable Development. 17(1): p. 1-12. Elsafi AM, Gandhidasan P, 2015. Comparative study of double-pass flat and compound parabolic concentrated photovoltaic–thermal systems with and without fins. Energy Conversion and Management. 98: p. 59-68.
  • Gang P, Huide F, Tao Z, Jie J, 2011. A numerical and experimental study on a heat pipe PV/T system. Solar Energy. 85(5): p. 911-921.
  • Gaur A, Tiwari GN, 2014. Performance of a-Si thin film PV modules with and without water flow: An experimental validation. Applied Energy. 128: p. 184-191.
  • Huang BJ, Lin TH, Hung WC, Sun FS, 2001. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy.70(5):443-448.
  • Jones AD, Underwood CP, 2001. A thermal model for photovoltaic systems. Solar Energy. 70(4):p.349–359.
  • Joshi AS, Tiwari, A, 2007. Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector. Renewable Energy. 32(13): p. 2223-2241.
  • Kasaeian, AB, Akhlaghi MM, Golzari S, Dehghani M, 2013. Modeling and optimization of an air-cooled photovoltaic thermal (PV/T) system using genetic algorithm. Applied Solar Energy 49. p.215–224.
  • Kazemian A, Hosseinzadeh M, Sardarabadi M, 2018. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study. Solar Energy. 173: p. 1002-1010.
  • Kumar R, Rosen MA, 2011a. A critical review of photovoltaic–thermal solar collectors for air heating. Applied Energy. 88(11): p. 3603-3614.
  • Kumar R, Rosen MA, 2011b. Performance evaluation of a double pass PV/T solar air heater with and without fins. Applied Thermal Engineering. 31. p.1402–1410.
  • Nadda R, Kumar A, Maithani R, 2018. Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review. Renewable Sustainable Energy Reviers. 93: p. 331-353.
  • Omer KA, Zala AM, 2018. Experimental investigation of PV/thermal collector with theoretical analysis. Renewable Energy Focus. 27: p. 67-77.
  • Özakin AN, Kaya F, 2019. Effect on the exergy of the PVT system of fins added to an air-cooled channel: A study on temperature and air velocity with ANSYS Fluent. Solar Energy. 184: p. 561-569.
  • Özakin AN, Kaya F, 2020. Experimental thermodynamic analysis of air-based PVT system using fins in different materials: Optimization of control parameters by Taguchi method and ANOVA. Solar Energy. 197: p. 199-211.
  • Sarhaddi F, Farahat S, Ajam H, Behzadmehr A, Mahdavi Adeli M, 2010. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector. Applied Energy 87. 2328–2339.
  • Shukla A, Kanta K, Sharmaa A, Biwole PH, 2017. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials and Solar Cells. 160: p. 275-286.
  • Singh S, Agarwal S, Tiwari GN, Chauhan D, 2015a. Application of genetic algorithm with multi-objective function to improve the efficiency of glazed photovoltaic thermal system for New Delhi (India) climatic condition. Solar Energy 117: p. 153-166.
  • Singh S, Agrawal S, Avasthi DV, 2014. Optimization of design parameters of glazed hybrid photovoltaic thermal module using genetic algorithm. International Conference on ‘‘CIPECH14’’. p. 458–463.
  • Singh. S. Agrawal. S.. 2015. Parameter identification of the glazed photovoltaic thermal system using Genetic Algorithm–Fuzzy System (GA–FS) approach and its comparative study. Energy Conv.Manag. 105: p. 763-771.
  • Singh S, Agrawal S, Tiwari A, Al-Helal I.M, Avasthi DV, 2015b. Modeling and parameter optimization of hybrid single channel photovoltaic thermal module using genetic algorithms. Solar Energy 113: p. 78-87.
  • Singh S, Agrawal S, Gadh R, 2015c. Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array. Energy Conversion and Management. 105: p. 303-312.
  • Slimani MEA, Amirat M, Kurucz I, Bahria S, Hamidat A, 2017. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Conversion and Management.. 133: p. 458-476.
  • Sobhnamayan F, Sarhaddi F, Alavi MA, Farahat S, Yazdanpanahi J, 2014. Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renewable Energy. 68:p.356–65.
  • Tiwari A, Sodha MS, Chandra A, Joshi JC, 2006. Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells 90(2): p. 175-189.
  • Tiwari A, Sodha. MS, 2007. Parametric study of various configurations of hybrid PV/thermal air collector: experimental validation of theoretical model. Solar Energy Materials and Solar Cells . 91:p. 17–28.
  • Wu SY, Wang T, Xiao I, Shen ZG, 2019. Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system. Sol. Energy 180: p. 489-500.
  • Yang T, Athienitis AK, 2015. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system. Applied Energy. 159: p. 70-79.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Ahmet Numan Özakın 0000-0002-2083-8703

Ferhat Kaya 0000-0002-8165-8300

Project Number BAP/2015-147
Publication Date March 1, 2020
Submission Date January 17, 2020
Acceptance Date January 30, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Özakın, A. N., & Kaya, F. (2020). Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu. Journal of the Institute of Science and Technology, 10(1), 509-519. https://doi.org/10.21597/jist.676800
AMA Özakın AN, Kaya F. Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu. J. Inst. Sci. and Tech. March 2020;10(1):509-519. doi:10.21597/jist.676800
Chicago Özakın, Ahmet Numan, and Ferhat Kaya. “Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu”. Journal of the Institute of Science and Technology 10, no. 1 (March 2020): 509-19. https://doi.org/10.21597/jist.676800.
EndNote Özakın AN, Kaya F (March 1, 2020) Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu. Journal of the Institute of Science and Technology 10 1 509–519.
IEEE A. N. Özakın and F. Kaya, “Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu”, J. Inst. Sci. and Tech., vol. 10, no. 1, pp. 509–519, 2020, doi: 10.21597/jist.676800.
ISNAD Özakın, Ahmet Numan - Kaya, Ferhat. “Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu”. Journal of the Institute of Science and Technology 10/1 (March 2020), 509-519. https://doi.org/10.21597/jist.676800.
JAMA Özakın AN, Kaya F. Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu. J. Inst. Sci. and Tech. 2020;10:509–519.
MLA Özakın, Ahmet Numan and Ferhat Kaya. “Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu”. Journal of the Institute of Science and Technology, vol. 10, no. 1, 2020, pp. 509-1, doi:10.21597/jist.676800.
Vancouver Özakın AN, Kaya F. Hava Soğutmalı PVT Panellerde Panel Yüzey Sıcaklığını Etkileyen Kontrol Parametrelerinin Optimizasyonu. J. Inst. Sci. and Tech. 2020;10(1):509-1.