Research Article
BibTex RIS Cite

Determination of the Effect of Grain Size Distribution on the Internal Friction Angle in Dry Sands by Direct Shear Test

Year 2020, Volume: 10 Issue: 3, 1702 - 1713, 01.09.2020
https://doi.org/10.21597/jist.682175

Abstract

One of the most common experiments to determine the internal friction angle and cohesion values in the laboratory is the direct shear test. For this study, the changes of strength parameters of completely dry soils in different relative densities and normal stresses were investigated. The direct shear test was performed under five different normal stresses and constant sample volumes. The comparison with the assumption that the cohesion of the sand is zero was made only based on the internal friction angle. The obtained shear strength angle values and the relative density and normal stress relationship were examined by considering the soil grain size distribution. The relative density in which the samples were tested showed an increase in the maximum and residual shear stress as well as the increase in normal stress, including the increase in physical properties such as the internal friction angle. In addition, the results showed how the grain size distribution of the soil affects the internal angle of friction.

References

  • Asadzadeh M, Soroush A, 2009. Direct Shear Testing on a Rockfill Material, The Arabian Journal for Science and Engineering, Vol.34, No.2B.
  • ASTM, 1990. Standard test method for direct shear test of soils under consolidated drained conditions, ASTM D3080-90. Philadelphia, PA: American Society for Testing and Materials.
  • ASTM D-4253-00, 2006. Standard Test Methods for Maximum Indeks Density and Unit Weight of Soils Using a Vibratory Table, ASTM International, West Conshohocken, PA, USA.
  • ASTM D-4253-00, 2006. Standard Test Methods for Minimum Indeks Density and Unit Weight of Soils and Calculation of Relative Density, ASTM International, West Conshohocken, PA, USA
  • Cabalar AF, 2011. Direct Shear Tests on Waste Tires–Sand Mixtures, Geotech. Geol. Eng. 29:411–418.
  • Çanakçı H, Güllü H, 2007. Kil-Kum Karışımı Zeminlerde Karışım Oranının İçsel Sürtünme Açısı Üzerine Etkisinin İncelenmesi, 2. Geoteknik Sempozyumu, Adana, s. 430-436.
  • Dafalla MA, 2013. Effects of clay and moisture content on direct shear tests for clay–sand mixtures. Adv Mater. Sci Eng 2013:562726.
  • Dey A, Mamo BG, Banoth KK, 2015. Effect of strain rate on shear strength parameter of sand. 50th Indıan Geotechnıcal Conference 17th – 19th December 2015, Pune, Maharashtra, India.
  • Edinçliler A, Baykal G, Dengili K, 2004. Determination of Static and Dynamic Behavior of Recycled Materials for Highways. Resources Conservation and Recycling, 42: 233-237.
  • Fannin RJ, Eliadorani A, Wilkinson JMT, 2005. Shear strength of cohesionless soils at low stress. Géotechnique, 55(6): 467-478.
  • Gotteland P, Lambert S, Balachowski L, 2005. Strength Characteristics of Tyre Chips-Sand Mixtures. Studia Geotechnica et Mechanica, 17: 1-2.
  • Holtz RD, Kovacs WD, 2015. Geoteknik Mühendisliğine Giriş 2.Cilt, Nobel Akademik Yayıncılık, Ankara, 540.
  • Kokusho T, Hara T, Hiraoka R, 2004. Undrained Shear Strength of Granular Soils with Different Particle Gradations, ASCE J. Geotech. Geoenviron. Eng., 130(6): 621-629.
  • Muawia AD, 2013. Effects of Clay and Moisture Content on Direct Shear Tests for Clay-Sand Mixtures. Journal of Advances in Materials Science and Engineering, pp. 1-8, December, 21.
  • Nam S, Gutierrez M, Diplas P, Petrie J, 2011. Determination of the shear strength of unsaturated soils using the multistage direct shear test. Engineering Geology, 122(3-4): 272-280.
  • Saito R, Fukuoka H, Sassa K, 2006. Experimental Study on the Rate Effect on the Shear Strength, Disaster Mitigation of Debris Flows, Slope Failures and Landslides.
  • Vallejo LE, Mawby R, 2000. Porosity influence on the shear strength of granular material–clay mixtures. Eng Geol. 58(2):125–136.
  • Sezer A, Altun S, Göktepe AB, 2011. Relationships between shape characteristics and shear strength of sands, Soils and Foundations, Vol. 51, No. 5, 857–871.
  • Simoni A, Houlsby GT, 2006. The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24: 523-549.
  • Şekercioğlu S, 2015. Kumlu Toprakların Geoteknik Özelliklerinin Geotekstil Kullanılarak İncelenmesi. Balıkesir Üniversitesi İnşaat Mühendisliği Yüksek Lisans Tezi, Ocak
  • Wang JJ, Zhang H, Tang S, Liang Y, 2013. Effects of particle size distribution on shear strength of accumulation soil, J. Geotech.Geoenviron. Eng., vol. 139, no. 11, pp.1994–1997.
  • Wang HL, Cui YJ, Lamas-Lopez F, Dupla JC, Canou J, Calon N, Saussine G, Aimedieu P, Chen RP, 2017. Effects of inclusion contents on resilient modulus and damping ratio of unsaturated track-bed materials. Can. Geotech. J. 54 (12): 1672–1681. https://doi.org/10.1139/cgj-2016-0673.
  • Wang HL, Cui YJ, Lamas-Lopez F, Calon N, Saussine G, Dupla JC, Canou J, Aimedieu P, Chen RP, 2018a. Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. Constr. Build. Mater. 164 (Mar): 228–237. https://doi.org/10 .1016 /jconbuildmat. 2017.12.209.
  • Wang HL, Cui YJ, Lamas-Lopez F, Dupla JC, Canou J, Calon N, Saussine G, Aimedieu P, Chen RP, 2018b. Permanent deformation of track-bed materials at various inclusion contents under large number of loading cycles. J. Geotech. Geoenviron. Eng. 144 (8): 04018044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001911.
  • Wichtmann T, Triantafyllidis T, 2009. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. J. Geotech. Geoenviron. Eng. 135 (10): 1404 – 1418. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000096.
  • Wichtmann T, Triantafyllidis T, 2013. Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well-graded quartz sands. J. Geotech. Geoenviron. Eng. 139 (1): 59–72. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000735.

Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi

Year 2020, Volume: 10 Issue: 3, 1702 - 1713, 01.09.2020
https://doi.org/10.21597/jist.682175

Abstract

Laboratuvardaki içsel sürtünme açısını ve kohezyon değerlerini belirlemek için yapılan en yaygın deneylerden biri direk kesme testidir. Bu çalışma için, tamamen kuru zeminlerin dayanım parametrelerinin, farklı rölatif sıkılıklar ve normal gerilmelerdeki değişimleri incelenmiştir. Deneysel çalışma direk kesme testi, beş farklı normal gerilme ve sabit numune hacmi altında yapılmıştır. Kumun kohezyonunun sıfır olduğu varsayımı ile karşılaştırma yalnızca içsel sürtünme açısına bağlı olarak gerçekleştirilmiştir. Elde edilen kayma mukavemeti açısı değerleri ile rölatif sıkılık ve normal gerilme ilişkisi, zemin tane çapı değişimi parametresi de göz önünde bulundurularak incelenmiştir. Numunelerin test edildiği rölatif sıkılıklarda, içsel sürtünme açısı gibi fiziksel özelliklerin artışını içeren normal gerilmedeki artışla birlikte maksimum ve artık kayma gerilmesinde de bir artış olduğu görülmüştür. Ayrıca elde edilen sonuçlar, zeminin dane çapı dağılımının içsel sürtünme açısını nasıl etkilediğini göstermiştir.

References

  • Asadzadeh M, Soroush A, 2009. Direct Shear Testing on a Rockfill Material, The Arabian Journal for Science and Engineering, Vol.34, No.2B.
  • ASTM, 1990. Standard test method for direct shear test of soils under consolidated drained conditions, ASTM D3080-90. Philadelphia, PA: American Society for Testing and Materials.
  • ASTM D-4253-00, 2006. Standard Test Methods for Maximum Indeks Density and Unit Weight of Soils Using a Vibratory Table, ASTM International, West Conshohocken, PA, USA.
  • ASTM D-4253-00, 2006. Standard Test Methods for Minimum Indeks Density and Unit Weight of Soils and Calculation of Relative Density, ASTM International, West Conshohocken, PA, USA
  • Cabalar AF, 2011. Direct Shear Tests on Waste Tires–Sand Mixtures, Geotech. Geol. Eng. 29:411–418.
  • Çanakçı H, Güllü H, 2007. Kil-Kum Karışımı Zeminlerde Karışım Oranının İçsel Sürtünme Açısı Üzerine Etkisinin İncelenmesi, 2. Geoteknik Sempozyumu, Adana, s. 430-436.
  • Dafalla MA, 2013. Effects of clay and moisture content on direct shear tests for clay–sand mixtures. Adv Mater. Sci Eng 2013:562726.
  • Dey A, Mamo BG, Banoth KK, 2015. Effect of strain rate on shear strength parameter of sand. 50th Indıan Geotechnıcal Conference 17th – 19th December 2015, Pune, Maharashtra, India.
  • Edinçliler A, Baykal G, Dengili K, 2004. Determination of Static and Dynamic Behavior of Recycled Materials for Highways. Resources Conservation and Recycling, 42: 233-237.
  • Fannin RJ, Eliadorani A, Wilkinson JMT, 2005. Shear strength of cohesionless soils at low stress. Géotechnique, 55(6): 467-478.
  • Gotteland P, Lambert S, Balachowski L, 2005. Strength Characteristics of Tyre Chips-Sand Mixtures. Studia Geotechnica et Mechanica, 17: 1-2.
  • Holtz RD, Kovacs WD, 2015. Geoteknik Mühendisliğine Giriş 2.Cilt, Nobel Akademik Yayıncılık, Ankara, 540.
  • Kokusho T, Hara T, Hiraoka R, 2004. Undrained Shear Strength of Granular Soils with Different Particle Gradations, ASCE J. Geotech. Geoenviron. Eng., 130(6): 621-629.
  • Muawia AD, 2013. Effects of Clay and Moisture Content on Direct Shear Tests for Clay-Sand Mixtures. Journal of Advances in Materials Science and Engineering, pp. 1-8, December, 21.
  • Nam S, Gutierrez M, Diplas P, Petrie J, 2011. Determination of the shear strength of unsaturated soils using the multistage direct shear test. Engineering Geology, 122(3-4): 272-280.
  • Saito R, Fukuoka H, Sassa K, 2006. Experimental Study on the Rate Effect on the Shear Strength, Disaster Mitigation of Debris Flows, Slope Failures and Landslides.
  • Vallejo LE, Mawby R, 2000. Porosity influence on the shear strength of granular material–clay mixtures. Eng Geol. 58(2):125–136.
  • Sezer A, Altun S, Göktepe AB, 2011. Relationships between shape characteristics and shear strength of sands, Soils and Foundations, Vol. 51, No. 5, 857–871.
  • Simoni A, Houlsby GT, 2006. The direct shear strength and dilatancy of sand-gravel mixtures. Geotechnical and Geological Engineering, 24: 523-549.
  • Şekercioğlu S, 2015. Kumlu Toprakların Geoteknik Özelliklerinin Geotekstil Kullanılarak İncelenmesi. Balıkesir Üniversitesi İnşaat Mühendisliği Yüksek Lisans Tezi, Ocak
  • Wang JJ, Zhang H, Tang S, Liang Y, 2013. Effects of particle size distribution on shear strength of accumulation soil, J. Geotech.Geoenviron. Eng., vol. 139, no. 11, pp.1994–1997.
  • Wang HL, Cui YJ, Lamas-Lopez F, Dupla JC, Canou J, Calon N, Saussine G, Aimedieu P, Chen RP, 2017. Effects of inclusion contents on resilient modulus and damping ratio of unsaturated track-bed materials. Can. Geotech. J. 54 (12): 1672–1681. https://doi.org/10.1139/cgj-2016-0673.
  • Wang HL, Cui YJ, Lamas-Lopez F, Calon N, Saussine G, Dupla JC, Canou J, Aimedieu P, Chen RP, 2018a. Investigation on the mechanical behavior of track-bed materials at various contents of coarse grains. Constr. Build. Mater. 164 (Mar): 228–237. https://doi.org/10 .1016 /jconbuildmat. 2017.12.209.
  • Wang HL, Cui YJ, Lamas-Lopez F, Dupla JC, Canou J, Calon N, Saussine G, Aimedieu P, Chen RP, 2018b. Permanent deformation of track-bed materials at various inclusion contents under large number of loading cycles. J. Geotech. Geoenviron. Eng. 144 (8): 04018044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001911.
  • Wichtmann T, Triantafyllidis T, 2009. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus Gmax. J. Geotech. Geoenviron. Eng. 135 (10): 1404 – 1418. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000096.
  • Wichtmann T, Triantafyllidis T, 2013. Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well-graded quartz sands. J. Geotech. Geoenviron. Eng. 139 (1): 59–72. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000735.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Eyyüb Karakan 0000-0003-2133-6796

Zelal Ebren 0000-0003-0461-6323

Publication Date September 1, 2020
Submission Date January 30, 2020
Acceptance Date April 6, 2020
Published in Issue Year 2020 Volume: 10 Issue: 3

Cite

APA Karakan, E., & Ebren, Z. (2020). Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1702-1713. https://doi.org/10.21597/jist.682175
AMA Karakan E, Ebren Z. Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi. J. Inst. Sci. and Tech. September 2020;10(3):1702-1713. doi:10.21597/jist.682175
Chicago Karakan, Eyyüb, and Zelal Ebren. “Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri Ile Belirlenmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10, no. 3 (September 2020): 1702-13. https://doi.org/10.21597/jist.682175.
EndNote Karakan E, Ebren Z (September 1, 2020) Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10 3 1702–1713.
IEEE E. Karakan and Z. Ebren, “Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi”, J. Inst. Sci. and Tech., vol. 10, no. 3, pp. 1702–1713, 2020, doi: 10.21597/jist.682175.
ISNAD Karakan, Eyyüb - Ebren, Zelal. “Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri Ile Belirlenmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10/3 (September 2020), 1702-1713. https://doi.org/10.21597/jist.682175.
JAMA Karakan E, Ebren Z. Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi. J. Inst. Sci. and Tech. 2020;10:1702–1713.
MLA Karakan, Eyyüb and Zelal Ebren. “Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri Ile Belirlenmesi”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10, no. 3, 2020, pp. 1702-13, doi:10.21597/jist.682175.
Vancouver Karakan E, Ebren Z. Kuru Kumlarda Dane Çapı Dağılımının İçsel Sürtünme Açısına Etkisinin Kesme Kutusu Deneyleri ile Belirlenmesi. J. Inst. Sci. and Tech. 2020;10(3):1702-13.