Research Article
BibTex RIS Cite

Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi

Year 2020, Volume: 10 Issue: 3, 2199 - 2206, 01.09.2020
https://doi.org/10.21597/jist.731527

Abstract

Bu araştırmada, kurşun (Pb), kadmiyum (Cd) ve krom (Cr) ağır metallerinin dallı darı (Panicum virgatum)’nın gelişimi üzerine etkileri ile dallı darının bu metalleri akümülasyon potansiyelinin belirlenmesi amaçlanmıştır. Deneme tesadüf parselleri deneme desenine göre üç tekrarlamalı olarak iklim odasında saksılarda yürütülmüştür. Araştırmada dallı darının Trailblazer çeşidi Pb’nin 0, 30, 60, 90, 120 mg kg-1, Cd’nin 0, 2.5, 5, 10, 20 mg kg-1 ve Cr’nin 0, 40, 80, 120, 160 mg kg-1 uygulandığı yetiştirme ortamlarında büyütülmüş ve gelişimleri incelenmiştir. Araştırma sonuçlarına göre her üç ağır metalin uygulanan düşük konsantrasyonlarında bitki boyu, yaş ve kuru biomas kontrole göre çok az gerileme gözlenmiştir. Uygulanan en yüksek konsantrasyonlarda gelişme geriliği artmış ancak bitki ölümleri olmamıştır. Bitkinin ağır metal içerikleri artan konsantrasyonlara bağlı olarak artmıştır. Biyolojik alınabilirlik indeksi her üç ağır metalin bütün konsantrasyonlarında 1’in üzerinde bulunmuştur. Sonuç olarak Pb, Cd ve Cr ağır metalleri ile kirlenmiş toprakların temizlenmesinde dallı darının iyi bir aday bitki olduğu düşünülmektedir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar ve Proje Başkanlığı

Project Number

2015-FBE-YL279

Thanks

Bu projenin yürütülmesine 2015-FBE-YL279 No'lu proje kapsamında destekte bulunan Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırmalar ve Proje Başkanlığına teşekkür ederiz.

References

  • Baş AL, Demet Ö, 1992. Çevresel Toksikoloji Yönünden Bazı Ağır Metaller. Ekoloji 5, 42-46.
  • Chen HM, Zheng CN, Tu C, Shen ZG, 2000. Chemical Methods and Phytoremediation of Soil Contaminated with Heavy Metals. Chemosphere, 41, 229-234.
  • Chumbley CG, Unwin RJ, 1982. Cadmium and Lead Content of Vegetable Crops Grown on Land with a History of Sewage Sludge Application. Environmental Pollution Series B, Chemical and Physical 4(3), 231-237.
  • Citterio S, Santagostıno A, Fumagallı P, Prato N, Ranallı P, Sgorbatı S, 2003. Heavy Metal Tolerance and Accumulation of Cd, Cr, and Ni by Cannabis sativa L. Plant and Soil, 256, 243−252.
  • Claire LC, Adriano DC, Sajwan KS, Abel SL, Thoma DP, Driver JT, 1991. Effects of Selected Trace Metals on Germinating Seeds of Six Plant Species. Water,Air,and Soil Pollution, 59, 231-240.
  • Cui YJ, Zhu YG, Zhai RH, Chen DY, Huang YZ, Qiu Y, Liang JZ, 2004. Transfer of Metals From Soil to Vegetables in an Area Near a Smelter in Nanning, China. Environment International 30(6), 785-791.
  • Das P, Samantaray S, Rout GR, 1997. Studies on Cd Toxicity in Plants ; a Review. Environ. Pollution, 98, 29-36.
  • Diwan H, Ahmad A, Iqbal M, 2008. Genotypic Variation in the Phytoremediation Potential of Indian Mustard for Chromium. Environmental Management, 41, 734-741.
  • Eren A, 2010. Kurşun Kirliliği Görülen Toprakların Transgenik Tütün Bitkisi Kullanılarak Temizlenmesi. Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (Basılmış).
  • Eren A, Dağhan H, 2014. Transgenic tobacco-bearing p-cV-ChMTIIGFP gene accumulated more lead compared to wild type. Polish Journal of Environmental Studies, 23(2), 569-571.
  • Eren A, 2018. Xanthium Strumarium L. Bitkisi Yetiştirilerek Kadmiyum ile Kirlenmiş Toprakların Temizlenme Olanağının Araştırılması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(3), 265-270.
  • Fediuc E, Erdei L, 2002. Physiological and Biochemical Aspects of Cadmium Toxicity and Protective Mechanisms in Phragmites ausstralis and Typha latifolia. Journal of Plant Physioogyl, 159, 265-271.
  • Fernandes JC, Henriques FS, 1991. Biocehmical, Physiological and Structural Effects of Excess Copper in Plants. The Botanical Rewiev, 57, 246-273 .
  • Ghosh M, Singh SP, 2005. A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species. Environmental Pollution, 133, 365-371.
  • Göksu Ö, Güngör B, 2005. Toprak Kirliliğinin Önemi ve Kontrol Teknikleri. 6. Ulusal Çevre Mühendisliği Kongresi, Poster Sunumlar, Samsun.
  • Hamutoğlu R, Dinçsoy AB, Cansaran Duman D, Saras S, 2012. Biyosorpsiyon, Adsorpsiyon ve Fitoremediasyon Yöntemleri ve Uygulamaları. Türk Hij. Den. Biyol. Derg, 69, 235−253.
  • Jana TD, Barua B, 1987. Effects and Relative Toxicity of Heavy Metals on Cuscuta reflexa, Water, Air and Soil Pollution, 33, 23-27.
  • Kacar B, İnal A, 2008. Bitki Analizleri, Cilt 1., Nobel yayınları, Ankara 892 s.
  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ, 2000. Role of Plants, Mycorrhizae and Phytochelators in Heavy Metal Contaminated Land Remediation. Chemosphere, 41, 197-207.
  • McGrath SP, Zhao FJ, 2003. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotechnol. 14, 277–282.
  • Monni S, Salemaa M, Millar N, 2000. The Tolerance of Empetrum nigrum to Copper and Nickel. Environ. Pollution, 109, 221-229.
  • Neilson JW, Artiola JF, Maier RM, 2003. Characterization of Lead Removal from Contaminated Soils by non Toxic Washing Agents. Journal of Environmenal Quality, 32, 899-908.
  • Quariti O, Gouia H, Ghorbal MH, 1997. Responses of Bean and Tomato Plants to Cadmium: Growth, Mineral Nutrition and Nitrate Reduction. Plant Physiology and Biochemistry, 35 (5), 347- 354.
  • Salt, DE, Smith RD, Raskin I, 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol., 49, 643-668.
  • Samson RA, Omielan JA, 1992. Switchgrass: A potential biomass energy crop for ethanol production Thirteenth North American Prairie Conference. Windsor, Ontario, Canada. 253-258.
  • Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish D J, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR, 1996. Switchgrass as a Sustainable Bioenergy Crop. Bioresource Technology, 56, 83-93.
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S, 2005. Chromium Toxicity in Plants. Environment International, 31, 739-753.
  • Sharma P, Dubey RS, 2005. Lead Toxicity in Plants. Brazilian Journal of Plant Physiol, 17 (1), 35-52.
  • Tester M, Leigh RA, 2001. Partitioning of Nutrient Transport Processes in Roots. 1. Exp. Bot., 52, 445-457.
  • Turhollow AF, 1991. Screening Herbaceous Lignocellulosic Energy Crops in Temperate Regions of the USA. Bioresource Technology, 36, 247-252.
  • Verma S, Dubey RS, 2003. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Sci., 164, 645-655.
  • Zayed A, Terry N, 2003. Chromium in the Environment: Factors Affecting Biological Remediation. Plant and Soil, 249, 139-56
  • Zenk MH, 1996. Heavy Metal Detoxification in Higher Plants-a Review. Gene, 179, 21-30.

Determination of Switchgrass (Panicum Virgatum)'s Lead, Cadmium, Crom Tolerance And Accumulation Potential

Year 2020, Volume: 10 Issue: 3, 2199 - 2206, 01.09.2020
https://doi.org/10.21597/jist.731527

Abstract

In this study, it is aimed to determine the effects of heavy metals, namely, lead (Pb), cadmium (Cd) and crom (Cr), on the development of switchgrass (Panicum virgatum) and Pb, Cd, Cr accumulation potential of switchgrass. This experiment was conducted in three times replicates through completely randomized block design, in plastik pots in the climate room. In the study, Trailblazer species of switchgrass were grown in soils where 0, 30, 60, 90, 120 mg kg-1 concentrations of Pb; 0, 2.5, 5, 10, 20 mg kg-1 concentrations of Cd and 0, 40, 80, 120, 160 mg kg-1 concentrations of Cr were applied, and their developments were investigated. According to the results of this study, in low concentrations of each three heavy metals applied, very little regression was observed in plant height, green and dry biomass with respect to control. In the highest concentrations applied, development retardation increased, however, plant deaths did not occur. Heavy metal contents of the plant had increased with increasing concentrations. Bioconcentration factor was found to be higher than 1 in all concentrations of each three heavy metals. In light of these results, it is thought that Panicum virgatum is a good prospective plant in cleaning of soils contaminated with Pb, Cd, and Cr.

Project Number

2015-FBE-YL279

References

  • Baş AL, Demet Ö, 1992. Çevresel Toksikoloji Yönünden Bazı Ağır Metaller. Ekoloji 5, 42-46.
  • Chen HM, Zheng CN, Tu C, Shen ZG, 2000. Chemical Methods and Phytoremediation of Soil Contaminated with Heavy Metals. Chemosphere, 41, 229-234.
  • Chumbley CG, Unwin RJ, 1982. Cadmium and Lead Content of Vegetable Crops Grown on Land with a History of Sewage Sludge Application. Environmental Pollution Series B, Chemical and Physical 4(3), 231-237.
  • Citterio S, Santagostıno A, Fumagallı P, Prato N, Ranallı P, Sgorbatı S, 2003. Heavy Metal Tolerance and Accumulation of Cd, Cr, and Ni by Cannabis sativa L. Plant and Soil, 256, 243−252.
  • Claire LC, Adriano DC, Sajwan KS, Abel SL, Thoma DP, Driver JT, 1991. Effects of Selected Trace Metals on Germinating Seeds of Six Plant Species. Water,Air,and Soil Pollution, 59, 231-240.
  • Cui YJ, Zhu YG, Zhai RH, Chen DY, Huang YZ, Qiu Y, Liang JZ, 2004. Transfer of Metals From Soil to Vegetables in an Area Near a Smelter in Nanning, China. Environment International 30(6), 785-791.
  • Das P, Samantaray S, Rout GR, 1997. Studies on Cd Toxicity in Plants ; a Review. Environ. Pollution, 98, 29-36.
  • Diwan H, Ahmad A, Iqbal M, 2008. Genotypic Variation in the Phytoremediation Potential of Indian Mustard for Chromium. Environmental Management, 41, 734-741.
  • Eren A, 2010. Kurşun Kirliliği Görülen Toprakların Transgenik Tütün Bitkisi Kullanılarak Temizlenmesi. Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü Yüksek Lisans Tezi (Basılmış).
  • Eren A, Dağhan H, 2014. Transgenic tobacco-bearing p-cV-ChMTIIGFP gene accumulated more lead compared to wild type. Polish Journal of Environmental Studies, 23(2), 569-571.
  • Eren A, 2018. Xanthium Strumarium L. Bitkisi Yetiştirilerek Kadmiyum ile Kirlenmiş Toprakların Temizlenme Olanağının Araştırılması. Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(3), 265-270.
  • Fediuc E, Erdei L, 2002. Physiological and Biochemical Aspects of Cadmium Toxicity and Protective Mechanisms in Phragmites ausstralis and Typha latifolia. Journal of Plant Physioogyl, 159, 265-271.
  • Fernandes JC, Henriques FS, 1991. Biocehmical, Physiological and Structural Effects of Excess Copper in Plants. The Botanical Rewiev, 57, 246-273 .
  • Ghosh M, Singh SP, 2005. A Comparative Study of Cadmium Phytoextraction by Accumulator and Weed Species. Environmental Pollution, 133, 365-371.
  • Göksu Ö, Güngör B, 2005. Toprak Kirliliğinin Önemi ve Kontrol Teknikleri. 6. Ulusal Çevre Mühendisliği Kongresi, Poster Sunumlar, Samsun.
  • Hamutoğlu R, Dinçsoy AB, Cansaran Duman D, Saras S, 2012. Biyosorpsiyon, Adsorpsiyon ve Fitoremediasyon Yöntemleri ve Uygulamaları. Türk Hij. Den. Biyol. Derg, 69, 235−253.
  • Jana TD, Barua B, 1987. Effects and Relative Toxicity of Heavy Metals on Cuscuta reflexa, Water, Air and Soil Pollution, 33, 23-27.
  • Kacar B, İnal A, 2008. Bitki Analizleri, Cilt 1., Nobel yayınları, Ankara 892 s.
  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ, 2000. Role of Plants, Mycorrhizae and Phytochelators in Heavy Metal Contaminated Land Remediation. Chemosphere, 41, 197-207.
  • McGrath SP, Zhao FJ, 2003. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotechnol. 14, 277–282.
  • Monni S, Salemaa M, Millar N, 2000. The Tolerance of Empetrum nigrum to Copper and Nickel. Environ. Pollution, 109, 221-229.
  • Neilson JW, Artiola JF, Maier RM, 2003. Characterization of Lead Removal from Contaminated Soils by non Toxic Washing Agents. Journal of Environmenal Quality, 32, 899-908.
  • Quariti O, Gouia H, Ghorbal MH, 1997. Responses of Bean and Tomato Plants to Cadmium: Growth, Mineral Nutrition and Nitrate Reduction. Plant Physiology and Biochemistry, 35 (5), 347- 354.
  • Salt, DE, Smith RD, Raskin I, 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol., 49, 643-668.
  • Samson RA, Omielan JA, 1992. Switchgrass: A potential biomass energy crop for ethanol production Thirteenth North American Prairie Conference. Windsor, Ontario, Canada. 253-258.
  • Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish D J, Wolf DD, Taliaferro C, Hopkins AA, Ocumpaugh WR, Hussey MA, Read JC, Tischler CR, 1996. Switchgrass as a Sustainable Bioenergy Crop. Bioresource Technology, 56, 83-93.
  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S, 2005. Chromium Toxicity in Plants. Environment International, 31, 739-753.
  • Sharma P, Dubey RS, 2005. Lead Toxicity in Plants. Brazilian Journal of Plant Physiol, 17 (1), 35-52.
  • Tester M, Leigh RA, 2001. Partitioning of Nutrient Transport Processes in Roots. 1. Exp. Bot., 52, 445-457.
  • Turhollow AF, 1991. Screening Herbaceous Lignocellulosic Energy Crops in Temperate Regions of the USA. Bioresource Technology, 36, 247-252.
  • Verma S, Dubey RS, 2003. Lead Toxicity Induces Lipid Peroxidation and Alters the Activities of Antioxidant Enzymes in Growing Rice Plants. Plant Sci., 164, 645-655.
  • Zayed A, Terry N, 2003. Chromium in the Environment: Factors Affecting Biological Remediation. Plant and Soil, 249, 139-56
  • Zenk MH, 1996. Heavy Metal Detoxification in Higher Plants-a Review. Gene, 179, 21-30.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Policy, Agronomy
Journal Section Tarla Bitkileri / Field Crops
Authors

İdris Alacabey 0000-0001-7916-3221

Şeyda Zorer Çelebi 0000-0003-1278-1994

Project Number 2015-FBE-YL279
Publication Date September 1, 2020
Submission Date May 3, 2020
Acceptance Date May 22, 2020
Published in Issue Year 2020 Volume: 10 Issue: 3

Cite

APA Alacabey, İ., & Zorer Çelebi, Ş. (2020). Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi. Journal of the Institute of Science and Technology, 10(3), 2199-2206. https://doi.org/10.21597/jist.731527
AMA Alacabey İ, Zorer Çelebi Ş. Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi. J. Inst. Sci. and Tech. September 2020;10(3):2199-2206. doi:10.21597/jist.731527
Chicago Alacabey, İdris, and Şeyda Zorer Çelebi. “Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı Ve Akümülasyon Potansiyelinin Belirlenmesi”. Journal of the Institute of Science and Technology 10, no. 3 (September 2020): 2199-2206. https://doi.org/10.21597/jist.731527.
EndNote Alacabey İ, Zorer Çelebi Ş (September 1, 2020) Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi. Journal of the Institute of Science and Technology 10 3 2199–2206.
IEEE İ. Alacabey and Ş. Zorer Çelebi, “Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi”, J. Inst. Sci. and Tech., vol. 10, no. 3, pp. 2199–2206, 2020, doi: 10.21597/jist.731527.
ISNAD Alacabey, İdris - Zorer Çelebi, Şeyda. “Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı Ve Akümülasyon Potansiyelinin Belirlenmesi”. Journal of the Institute of Science and Technology 10/3 (September 2020), 2199-2206. https://doi.org/10.21597/jist.731527.
JAMA Alacabey İ, Zorer Çelebi Ş. Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi. J. Inst. Sci. and Tech. 2020;10:2199–2206.
MLA Alacabey, İdris and Şeyda Zorer Çelebi. “Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı Ve Akümülasyon Potansiyelinin Belirlenmesi”. Journal of the Institute of Science and Technology, vol. 10, no. 3, 2020, pp. 2199-06, doi:10.21597/jist.731527.
Vancouver Alacabey İ, Zorer Çelebi Ş. Dallı Darı (Panicum virgatum)’nın Kurşun, Kadmiyum, Krom Toleransı ve Akümülasyon Potansiyelinin Belirlenmesi. J. Inst. Sci. and Tech. 2020;10(3):2199-206.