Research Article
BibTex RIS Cite

PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları

Year 2020, Volume: 10 Issue: 4, 2551 - 2558, 15.12.2020
https://doi.org/10.21597/jist.717735

Abstract

Bloedite tipi olarak adlandırılan [Na2M(SO4)2.(4H2O) (M= Mn, Zn, Ni, Cu, Fe, Co)] malzemeler teknolojik olarak sensör ve enerji depolama sistemlerinde aktif olarak kullanılabilmektedir. Bu kapsamda Na2X(SO4)2.(4H2O) (X=Mg, Ni) bloedite malzemelerinin jel forma getirilerek kapasitör elektroliti özellikleri incelenmiştir. Polivinil Alkol (PVA) ile jel forma getirilen Ni ve Mg-bloedite yapılarının cv ölçümleri yapılmış ve ±1 V bölgesi içinde kalıcı akım düzlüklerine sahip oldukları belirlenmiştir. Kapasitör yapımında paslanmaz çelik folyolar elektrot olarak kullanılmıştır ve yapılan kapasite ölçümlerinde Ni-bleodite ~28 mFg-1, Mg-bleodite ~25 mFg-1 deşarj kapasitans değerlerine ulaşmıştır. Şarj-deşarj döngüsel kapasitans değeri belirleme çalışmaları kapsamında, 50 döngü sonunda Ni-bloedite yapısının Mg-bloedite yapısına göre iki kattan daha fazla yüksek kapasitans değeri sağladığı belirlenmiştir. Bu farklılık jel elektrolit viskozitesi ile ilişkilendirilmiştir. Yapılan çalışmalar sonucunda PVA-Bloedite yapılı malzemelerin kapasitör enerji depolama sistemlerinde jel elektrolit olarak kullanılmasına uygun olduğu belirlenmiştir.

References

  • Abbas Q, Pajak D, Frackowiak E and Beguin F, 2014. Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim.Acta 140: 132-138.
  • Abouelamaiem D I, He G, Parkin I, Neville T P, Jorge A B, Ji S, Wang R, Titirici M M, Shearing P R and Brett D J L, 2018. Synergistic relationship between the threedimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels DOI: 10.1039/c7se00519a
  • Chang Y-W, Wang1y E, Shin G, Han J-E and Mather P T, 2007. Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polymers for Advanced Technologıes 18: 535–543.
  • Demirel S, 2020. Temperature Dependent Polarization Effect and Capacitive Performance Enhancement of PVA-Borax Gel Electrolyte. International Journal of Electrochemical Science 15: 2439-2448.
  • Fic K, Lota G, Meller M and Frackowiak E, 2012. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environental Science 5: 5842–5850.
  • González A, Goikolea E, Barrena J A, Mysyk R, 2016. Review on Supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58: 189–1206.
  • Kasatkın A V, Nestola F, Plasıl J, Marty J, Belakovskıy D I, Agakhanov A A, Mılls S J, Pedron D, Lanza A, Favaro M, Bıanchın S, Lykova I S, Golıas V, nad Bırch W D, 2013. Manganoblodite, Na2Mn(SO4)2·4H2O, and cobaltoblodite, Na2Co(SO4)2·4H2O: two new members of the blodite group from the Blue Lizard mine, San Juan County, Utah, USA, Mineralogical Magazine 77: 367–383.
  • Latifatu M, Lee H S, Yoon C S, Oh J, Park J H, Park J W, Ko J M, 2016. Supercapacitive Properties of Activated Carbon-Quinone Derivative Composite Electrode in Different Hydrogen ion Conducting Electrolytes. International Journal of Electrochemical Science 11: 5353-5363.
  • Marinova D M, Zhecheva E N, Kukeva R R, Markov P V, Nihtianova D D, Stoyanova R K, 2017. Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts. Journal of Solid State Chemistry 250: 49–59.
  • McCormick CL, Blackmon KP, Elliott DL, 1986. Water‐soluble copolymers. XIII. Copolymers of acrylamide with sodium‐3‐acrylamido‐3‐methylbutanoate: Solution properties. Journal of Polymer Science Part A: Polymer Chemistry 24: 2619-2634.
  • Menzel J, Frackowiak E, Fic K, 2019. Electrochemical capacitor with water-based electrolyte operating at wide temperature range. Journal of Power Sources 414: 183-191.
  • Moon WG, Kim G-P, Lee M, Song HD, and Yi J, 2015. A Biodegradable Gel Electrolyte for Use in High-Performance Flexible Supercapacitors. ACS Applied Materials Interfaces 7: 3503–3511.
  • Pal B, Yang S, Ramesh S, Thangadurai V, and Jose R, 2019. Electrolyte selection for supercapacitive devices: A critical review. DOI: 10.1039/C9NA00374F
  • Reynaud M, Rousse G, Abakumov A M, Sougrati M T, Tendeloo G V, Chotard J-N and Tarascon J-M, 2014. Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2.4H2O. Journal of Materials Chemistry A 2: 2671.
  • Rong-rong Z, Yi-zong H, Yu-hong F, 2011. Crystal growth, optical spectra and thermal properties Of Na2Ni(SO4)2·4H2O Crystal. Advanced Materials Research 216: 312-315.
  • Ue M, Takeda M, Suzuki Y, Mori S, 1996. Chemical stability of γ-butyrolactone-based electrolytes for aluminum electrolytic capacitors. Journal of Power Sources 60: 185-190.
  • Ventosa E, Paulitsch B, Marzak P, Yun J, Schiegg F, Quast T, and Bandarenka A S, 2016. The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations. Advanced Science DOI: 10.1002/advs.201600211
  • Yahia HB, 2019. Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4. Crystalline Materials 234: 11-12.
  • Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J, 2015. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 44: 7484-7539.

Capacitor Applications of PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Gel Electrolytes

Year 2020, Volume: 10 Issue: 4, 2551 - 2558, 15.12.2020
https://doi.org/10.21597/jist.717735

Abstract

The bloedite type [Na2M(SO4)2.(4H2O) (M = Mn, Zn, Ni, Cu, Fe, Co)] materials are actively used in technology as sensors and energy storage materials. In this context, bloedite Na2X(SO4) 2. (4H2O) (X = Mg, Ni) materials were transformed into a gel form with Polyvinyl Alcohol (PVA), and, their capacitor electrolyte properties were examined. According to cv measurement results, it was determined that Ni and Mg-bloedite structures had permanent current regions in ±1 V range. In the experimental capacitor construction, stainless steel foils were used as electrodes. Ni-bleodite reached ~ 28 mF g-1, and, Mg-bleodite ~ 25 mF g-1 discharge capacitance values. The cycle life studies show that after 50 cycles, Ni-bloedite structure provide more than twice capacitance value compared to Mg-bloedite structure. This difference has been associated with gel electrolyte viscosity. As result of the studies, it has been determined that PVA-Bloedite structure are suitable for use as a gel electrolyte in capacitor energy storage systems.

References

  • Abbas Q, Pajak D, Frackowiak E and Beguin F, 2014. Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim.Acta 140: 132-138.
  • Abouelamaiem D I, He G, Parkin I, Neville T P, Jorge A B, Ji S, Wang R, Titirici M M, Shearing P R and Brett D J L, 2018. Synergistic relationship between the threedimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels DOI: 10.1039/c7se00519a
  • Chang Y-W, Wang1y E, Shin G, Han J-E and Mather P T, 2007. Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polymers for Advanced Technologıes 18: 535–543.
  • Demirel S, 2020. Temperature Dependent Polarization Effect and Capacitive Performance Enhancement of PVA-Borax Gel Electrolyte. International Journal of Electrochemical Science 15: 2439-2448.
  • Fic K, Lota G, Meller M and Frackowiak E, 2012. Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environental Science 5: 5842–5850.
  • González A, Goikolea E, Barrena J A, Mysyk R, 2016. Review on Supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 58: 189–1206.
  • Kasatkın A V, Nestola F, Plasıl J, Marty J, Belakovskıy D I, Agakhanov A A, Mılls S J, Pedron D, Lanza A, Favaro M, Bıanchın S, Lykova I S, Golıas V, nad Bırch W D, 2013. Manganoblodite, Na2Mn(SO4)2·4H2O, and cobaltoblodite, Na2Co(SO4)2·4H2O: two new members of the blodite group from the Blue Lizard mine, San Juan County, Utah, USA, Mineralogical Magazine 77: 367–383.
  • Latifatu M, Lee H S, Yoon C S, Oh J, Park J H, Park J W, Ko J M, 2016. Supercapacitive Properties of Activated Carbon-Quinone Derivative Composite Electrode in Different Hydrogen ion Conducting Electrolytes. International Journal of Electrochemical Science 11: 5353-5363.
  • Marinova D M, Zhecheva E N, Kukeva R R, Markov P V, Nihtianova D D, Stoyanova R K, 2017. Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts. Journal of Solid State Chemistry 250: 49–59.
  • McCormick CL, Blackmon KP, Elliott DL, 1986. Water‐soluble copolymers. XIII. Copolymers of acrylamide with sodium‐3‐acrylamido‐3‐methylbutanoate: Solution properties. Journal of Polymer Science Part A: Polymer Chemistry 24: 2619-2634.
  • Menzel J, Frackowiak E, Fic K, 2019. Electrochemical capacitor with water-based electrolyte operating at wide temperature range. Journal of Power Sources 414: 183-191.
  • Moon WG, Kim G-P, Lee M, Song HD, and Yi J, 2015. A Biodegradable Gel Electrolyte for Use in High-Performance Flexible Supercapacitors. ACS Applied Materials Interfaces 7: 3503–3511.
  • Pal B, Yang S, Ramesh S, Thangadurai V, and Jose R, 2019. Electrolyte selection for supercapacitive devices: A critical review. DOI: 10.1039/C9NA00374F
  • Reynaud M, Rousse G, Abakumov A M, Sougrati M T, Tendeloo G V, Chotard J-N and Tarascon J-M, 2014. Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2.4H2O. Journal of Materials Chemistry A 2: 2671.
  • Rong-rong Z, Yi-zong H, Yu-hong F, 2011. Crystal growth, optical spectra and thermal properties Of Na2Ni(SO4)2·4H2O Crystal. Advanced Materials Research 216: 312-315.
  • Ue M, Takeda M, Suzuki Y, Mori S, 1996. Chemical stability of γ-butyrolactone-based electrolytes for aluminum electrolytic capacitors. Journal of Power Sources 60: 185-190.
  • Ventosa E, Paulitsch B, Marzak P, Yun J, Schiegg F, Quast T, and Bandarenka A S, 2016. The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations. Advanced Science DOI: 10.1002/advs.201600211
  • Yahia HB, 2019. Crystal structure of a new polymorphic modification of Na2Mn3(SO4)4. Crystalline Materials 234: 11-12.
  • Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J, 2015. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 44: 7484-7539.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Serkan Demirel 0000-0003-1158-4956

Publication Date December 15, 2020
Submission Date April 10, 2020
Acceptance Date June 25, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Demirel, S. (2020). PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları. Journal of the Institute of Science and Technology, 10(4), 2551-2558. https://doi.org/10.21597/jist.717735
AMA Demirel S. PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları. J. Inst. Sci. and Tech. December 2020;10(4):2551-2558. doi:10.21597/jist.717735
Chicago Demirel, Serkan. “PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 2551-58. https://doi.org/10.21597/jist.717735.
EndNote Demirel S (December 1, 2020) PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları. Journal of the Institute of Science and Technology 10 4 2551–2558.
IEEE S. Demirel, “PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 2551–2558, 2020, doi: 10.21597/jist.717735.
ISNAD Demirel, Serkan. “PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları”. Journal of the Institute of Science and Technology 10/4 (December 2020), 2551-2558. https://doi.org/10.21597/jist.717735.
JAMA Demirel S. PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları. J. Inst. Sci. and Tech. 2020;10:2551–2558.
MLA Demirel, Serkan. “PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 2551-8, doi:10.21597/jist.717735.
Vancouver Demirel S. PVA-Bloedite [Na2X(SO4)2 (X= Ni, Mg)] Jel Elektrolitlerin Kapasitör Uygulamaları. J. Inst. Sci. and Tech. 2020;10(4):2551-8.