Research Article
BibTex RIS Cite

Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi

Year 2020, Volume: 10 Issue: 4, 2915 - 2925, 15.12.2020
https://doi.org/10.21597/jist.752676

Abstract

Aspir (Carthamus tinctorius L.), tohumlarında yüksek kaliteye sahip doymamış yağ asitlerinden oleik asit ve α-linolenik asit içeren endüstriyel hammadde kaynağı olma özelliğine sahip önemli bir yağ bitkisidir. Pendimethalin yabancı ot kontrolünün sağlanması için ekonomik değere sahip bitkilere uygulanan dinitroanilin grubu bir herbisittir. Salisilik asit biyotik ve abiyotik streslere karşı bitki savunmasında yer alan önemli bir bitkisel hormondur. Omega-3 yağ asidi desatürazlar (FAD3 ve FAD7) α-linolenik asit biyosentezi için anahtar enzimlerdir. Bu çalışmada pendimethalin ve salisilik asitin yağ asidi metabolizmasında görev alan FAD3 ve FAD7 gen anlatım düzeyleri üzerindeki olası etkileri araştırılmıştır. Çalışmada toplam 36 saksıda kontrollü iklim şartlarında yetiştirilen aspir bitkilerine 0,004 ve 0,01 M pendimethalin uygulaması yapılmıştır. Pendimethalin uygulanan örneklere 0,05 mM salisilik asit uygulanmıştır. Uygulama sonrası RNA izolasyonu, cDNA sentezi ve kantitatif polimeraz zincir reaksiyonu gerçekleştirilmiştir. Test ve kontrol grupları arasındaki kat değişimi 2^ (-delta delta CT) formülü ile hesaplanmıştır. Gen anlatım düzeyleri arasındaki değişim t testi ile değerlendirildi (p<0,05). Pendimethalinin FAD3 ve FAD7 genlerini aşağı yönde regüle ettiği, artan pendimethalin konsantrasyonuna bağlı olarak gen anlatım düzeylerinin azaldığı belirlenmiştir. Salisilik asitin pendimethalinin ortaya çıkardığı toksik etkiyi azaltıcı yönde etki gösterdiği, FAD3 ve FAD7 genlerini yukarı yönlü regüle ettiği tespit edilmiştir. Pendimethalinin Carthamus tinctorius L. Remzibey çeşidinde yağ asidi kalitesi ve α-linolenik asit biyosentezinde azalmaya neden olabileceği, salisilik asitin ise pendimethalinin olumsuz etkilerini giderici etkiye sahip olduğu ve α-linolenik asit miktarında kısmi artışa katkı sunabileceği düşünülmektedir.

References

  • Ahmad I, Ahmad A, Ahmad M, 2016. Binding properties of pendimethalin herbicide to DNA multispectroscopic and molecular docking approaches. Physical Chemistry Chemical Physics, 18: 6476-6485.
  • Ahmad MI, Potshangbam AM, Javed M, Ahmad M, 2020. Studies on conformational changes ınduced by binding of pendimethalin with human serum albumin. Chemosphere, 243: 1-11.
  • Akbari GA, Heshmati S, Soltani E, Dehaghi MA, 2019. Influence of seed priming on seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown under water deficit. International Journal of Plant Production, 14: 245-258.
  • Akbulut GB, 2019. Some biochemical changes in safflower (Carthamus tinctorius L.) plant exposed to pendimethalin stress. Harran Journal of Agricultural and Food Science, 23: 90-98.
  • Ali SM, Wasfi MA, 2016. Effect of pendimethalin and oxyfluorfen herbicides on relative water content in leaves of Zea mays L. seedlings. Journal of Plant Production, 7: 757-758.
  • Amjad KW, Chun MH, Khan N, Iqbal A, Lyu SW, Shah F, 2017. Bioengineered plants can be a useful source of omega 3 fatty acids. BioMed Research International, 7348919: 1-9.
  • Angelova VR, Perifanova-Nemska MN, Uzunova GP, Kolentsova EN, 2016. Accumulation of heavy metals in safflower (Carthamus tinctorius L.). International Journal of Biological Biomolecular Agricultural Food and Biotechnological Engineering, 10: 410-415.
  • Arici M, Abudayyak M, Boran T, Özhan G, 2020. Does pendimethalin develop in pancreatic cancer induced inflammation. Chemosphere, 252: 1-6.
  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR, 1992. Map based cloning of a gene controlling omega 3 fatty acid desaturation in Arabidopsis. Science, 258: 1353-1355.
  • Al-Chami Z, Amer N, Al-Bitar L, Cavoski I, 2015. Potential use of sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel lead and zinc. International Journal of Environmental Science and Technology, 12: 3957-3970.
  • Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE, 2019. Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain Sorghum. Frontiers in Plant Sciences, 10(192): 1-15.
  • Demailly F, Elfeky I, Malbezin L, Le-Guédard M, Eon M, Bessoule JJ, Feurtet-Mazel A, Delmas F, Mazzella N, Gonzalez P, 2019. Impact of diuron and s-metolachlor on the freshwater diatom gomphonema gracile complementarity between fatty acid profiles and different kinds of ecotoxicological ımpact endpoints. Science of The Total Environment, 688: 960-969.
  • El-Awadi ME, Hassan EA, 2011. Improving growth and productivity of fennel plant exposed to pendimethalin herbicide stress recovery treatments. Nature and Science, 9: 97-108.
  • El-Sheekh MM, Kotkat HM, Hammouda OHE, 1994. Effect of atrazine herbicide on growth photosynthesis protein synthesis and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicology and Environmental Safety, 29: 349-358.
  • Filimonova V, Goncalves F, Marques JC, De-Troch M, Goncalves AMM, 2016a. Biochemical and toxicological effects of organic herbicide primextra® gold tz and ınorganic copper compounds on zooplankton and phytoplankton species. Aquatic Toxicology, 177: 33-43.
  • Filimonova V, Gonçalves F, Marques JC, De-Troch M, Gonçalves AMM, 2016b. Fatty acid profiling as bioindicator of chemical stress in marine organisms a review. Ecological Indicators, 67: 657-672.
  • Hamed HS, El-Sayed YS, 2019. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin ınduced oxidative stress and genotoxicity in Nile Tilapia, Oreochromis niloticus L. Fish Physiology and Biochemistry, 45: 71-82.
  • Hatzios KK, Hoagland RE, 1989. Crop safeners for herbicides. Academic Press Incorporation, pp. 70-89, California-USA.
  • Hatzios KK, 2003. Herbicide safeners: Effective inducers of plant defense gene-enzyme systems. Phytoparasitica, 31: 1-5.
  • Hoagland, DR, Arnon DI, 1950. The water culture method for growing plants without soil. Circular-The College of Agriculture University of California, Berkeley-California, 32 sy.
  • Innis SM, 2008. Dietary omega 3 fatty acids and the developing brain. Brain Research, 1237: 35-43.
  • Khyzhnyak SV, Midyk SV, Sysoliatin SV, Kovalenko VL, Ishchenko LM, Voitsitskiy VМ, Yakubchak OM 2018. The content of fatty acids in the tissues of honey bees after feeding with herbicide. Ukrainian Journal of Ecology, 8: 51-54.
  • Langaro AC, Agostinetto D, Ruchel Q, Garcia JR, Perboni LT, 2017. Oxidative stress caused by the use of preemergent herbicides in rice crops. Revista Ciência Agronômica, 48: 358-364.
  • Lee WQ, Affandi ISM, Feroz SR, Mohamad SB, Tayyab S, 2017. Evaluation of pendimethalin binding to human serum albumin ınsights from spectroscopic and molecular modeling approach. Journal of Biochemical and Molecular Toxicology, 31: 1-9.
  • Li Y, Huang L, Liu X, Li X, Tan H, 2020. Exogenous salicylic acid alleviates halosulfuron methyl toxicity by coordinating the antioxidant system and ımproving photosynthesis in soybean (Glycine max Merr.). Acta Physiologiae Plantarum, 42: 1-10.
  • Liu F, Guo DD, Tu YH, Xue YR, Gao Y, Guo ML, 2016. Identification of reference genes for gene expression normalization in safflower (Carthamus tinctorius). Revista Brasileira de Farmacognosia, 26: 564-570.
  • Livak KJ, Schmittgen TD, 2001. Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2 Δ Δ CT Method. Methods, 25: 402-408.
  • Mosblech A, Feussner I, Heilmann I, 2009. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 47(6): 511-517.
  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S, 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. The Plant Cell, 20:768-785.
  • Namdjoyan S, Kermanian H, Soorki AA, Modarres-Tabatabaei S, Elyasi N, 2017. Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). Ecotoxicology, 26: 752-761.
  • Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M, 2020. Melatonin alleviates lead ınduced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology, 29: 108-118.
  • Nazari M, Mirlohi A, Majidi MM, 2017. Effects of drought stress on oil characteristics of Carthamus species. Journal of the American Oil Chemists' Society, 94: 247-256.
  • Nogales-Delgado S, Encinar JM, González JF, 2019. Safflower biodiesel ımprovement of ıts oxidative stability by using BHA and TBHQ. Energies, 12: 1-13.
  • Obenland OA, Riechers DE, 2020. Identification of chromosomes in Triticum aestivum possessing genes that confer tolerance to the synthetic auxin herbicide halauxifen-methyl. Scientific Reports, 10(8713): 1-10.
  • Radwan DEM, Mohamed AK, Fayez KA, Abdelrahman AM, 2019. Oxidative stress caused by basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon, 5: 1-8.
  • Rani A, Panwar A, Sathe M, Chandrashekhara KA, Kush A, 2018. Biofortification of safflower an oil seed crop engineered for ala targeting better sustainability and plant based omega 3 fatty acids. Transgenic Research, 27: 253-263.
  • Riechers DE, Kreuz K, Zhang Q, 2010. Detoxification without intoxication: Herbicide safeners activate plant defense gene expression. Plant Physiology, 153: 3-13.
  • Spormann S, Soares C, Fidalgo F, 2019. Salicylic acid alleviates glyphosate ınduced oxidative stress in Hordeum vulgare L. Journal of Environmental Management, 241: 226-234.
  • Verma S, Srivastava A, 2018. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. a biomarker based study. Chemosphere, 206: 248-254.
  • Wang J, Zhang C, Shi Y, Long M, Islam F, Yang C, Yang S, He Y, Zhou W, 2020. Evaluation of quinclorac toxicity and alleviation by salicylic acid in rice seedlings using ground based visible near infrared hyperspectral imaging. Plant Methods, 16: 1-16.
  • Yaman M, Nalbantoğlu B, 2019. Investigation of the effects of the fenoxaprop-p-ethyl herbicide and salicylic acid on the ascorbic acid and vitamin B6 vitamers in wheat leaves. Journal of Plant Growth Regulation, 39: 729-737.
  • Yüzbaşıoğlu E, Dalyan E, 2019. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiology and Biochemistry, 135: 322-330.
  • Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah O, 2019. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmetics, 6: 1-11.
  • Zhang Q, Xu F, Lambert KN, Riechers DE, 2007. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics, 7: 1261-1278.

The Effect of Pendimethaline and Salicylic Acid Applications on Expression of Carthamus tinctorius L. cv. “Remzibey” Fatty Acid Desaturase Genes

Year 2020, Volume: 10 Issue: 4, 2915 - 2925, 15.12.2020
https://doi.org/10.21597/jist.752676

Abstract

Safflower (Carthamus tinctorius L.) is an important oil plant, which is an industrial raw material source containing high quality unsaturated fatty acids, oleic acid and α-linolenic acid. Pendimethalin is a dinitroaniline group herbicide that is applied to plants of economic value for weed control. Salicylic acid is an important herbal hormone involved in plant defense against biotic and abiotic stresses. Omega-3 fatty acid desaturases (FAD3 and FAD7) are key enzymes for α-linolenic acid biosynthesis. In present study, the effects of pendimethalin and salicylic acid on the gene expression levels of FAD3 and FAD7 involved in fatty acid metabolism were investigated. In this study, 0,004 and 0,01 M pendimethalin were applied to safflower plants grown under controlled climatic conditions in 36 pots. 0,05 mM salicylic acid was applied to the samples where pendimethalin was applied. After application, RNA isolation, cDNA synthesis and quantitative polymerase chain reaction were performed. The fold change between the test and control groups was calculated with the formula 2^ (delta delta CT). The change between gene expression levels was evaluated by t test (p<0,05). It was determined that pendimethalin downregulated FAD3 and FAD7 genes and decreased gene expression levels dependant to pendimethalin concentration. It was determined that salicylic acid had a decreasing effect on the toxic effects caused by pendimethalin and upregulated the FAD3 and FAD7 genes. Pendimethalin is thought to cause a decrease in fatty acid quality and α-linolenic acid biosynthesis in Carthamus tinctorius L. cv. Remzibey, salicylic acid has a negative effect on pendimethalin and contributes to partial increase in α-linolenic acid.

References

  • Ahmad I, Ahmad A, Ahmad M, 2016. Binding properties of pendimethalin herbicide to DNA multispectroscopic and molecular docking approaches. Physical Chemistry Chemical Physics, 18: 6476-6485.
  • Ahmad MI, Potshangbam AM, Javed M, Ahmad M, 2020. Studies on conformational changes ınduced by binding of pendimethalin with human serum albumin. Chemosphere, 243: 1-11.
  • Akbari GA, Heshmati S, Soltani E, Dehaghi MA, 2019. Influence of seed priming on seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown under water deficit. International Journal of Plant Production, 14: 245-258.
  • Akbulut GB, 2019. Some biochemical changes in safflower (Carthamus tinctorius L.) plant exposed to pendimethalin stress. Harran Journal of Agricultural and Food Science, 23: 90-98.
  • Ali SM, Wasfi MA, 2016. Effect of pendimethalin and oxyfluorfen herbicides on relative water content in leaves of Zea mays L. seedlings. Journal of Plant Production, 7: 757-758.
  • Amjad KW, Chun MH, Khan N, Iqbal A, Lyu SW, Shah F, 2017. Bioengineered plants can be a useful source of omega 3 fatty acids. BioMed Research International, 7348919: 1-9.
  • Angelova VR, Perifanova-Nemska MN, Uzunova GP, Kolentsova EN, 2016. Accumulation of heavy metals in safflower (Carthamus tinctorius L.). International Journal of Biological Biomolecular Agricultural Food and Biotechnological Engineering, 10: 410-415.
  • Arici M, Abudayyak M, Boran T, Özhan G, 2020. Does pendimethalin develop in pancreatic cancer induced inflammation. Chemosphere, 252: 1-6.
  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR, 1992. Map based cloning of a gene controlling omega 3 fatty acid desaturation in Arabidopsis. Science, 258: 1353-1355.
  • Al-Chami Z, Amer N, Al-Bitar L, Cavoski I, 2015. Potential use of sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel lead and zinc. International Journal of Environmental Science and Technology, 12: 3957-3970.
  • Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE, 2019. Transcriptome profiling and genome-wide association studies reveal GSTs and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain Sorghum. Frontiers in Plant Sciences, 10(192): 1-15.
  • Demailly F, Elfeky I, Malbezin L, Le-Guédard M, Eon M, Bessoule JJ, Feurtet-Mazel A, Delmas F, Mazzella N, Gonzalez P, 2019. Impact of diuron and s-metolachlor on the freshwater diatom gomphonema gracile complementarity between fatty acid profiles and different kinds of ecotoxicological ımpact endpoints. Science of The Total Environment, 688: 960-969.
  • El-Awadi ME, Hassan EA, 2011. Improving growth and productivity of fennel plant exposed to pendimethalin herbicide stress recovery treatments. Nature and Science, 9: 97-108.
  • El-Sheekh MM, Kotkat HM, Hammouda OHE, 1994. Effect of atrazine herbicide on growth photosynthesis protein synthesis and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicology and Environmental Safety, 29: 349-358.
  • Filimonova V, Goncalves F, Marques JC, De-Troch M, Goncalves AMM, 2016a. Biochemical and toxicological effects of organic herbicide primextra® gold tz and ınorganic copper compounds on zooplankton and phytoplankton species. Aquatic Toxicology, 177: 33-43.
  • Filimonova V, Gonçalves F, Marques JC, De-Troch M, Gonçalves AMM, 2016b. Fatty acid profiling as bioindicator of chemical stress in marine organisms a review. Ecological Indicators, 67: 657-672.
  • Hamed HS, El-Sayed YS, 2019. Antioxidant activities of Moringa oleifera leaf extract against pendimethalin ınduced oxidative stress and genotoxicity in Nile Tilapia, Oreochromis niloticus L. Fish Physiology and Biochemistry, 45: 71-82.
  • Hatzios KK, Hoagland RE, 1989. Crop safeners for herbicides. Academic Press Incorporation, pp. 70-89, California-USA.
  • Hatzios KK, 2003. Herbicide safeners: Effective inducers of plant defense gene-enzyme systems. Phytoparasitica, 31: 1-5.
  • Hoagland, DR, Arnon DI, 1950. The water culture method for growing plants without soil. Circular-The College of Agriculture University of California, Berkeley-California, 32 sy.
  • Innis SM, 2008. Dietary omega 3 fatty acids and the developing brain. Brain Research, 1237: 35-43.
  • Khyzhnyak SV, Midyk SV, Sysoliatin SV, Kovalenko VL, Ishchenko LM, Voitsitskiy VМ, Yakubchak OM 2018. The content of fatty acids in the tissues of honey bees after feeding with herbicide. Ukrainian Journal of Ecology, 8: 51-54.
  • Langaro AC, Agostinetto D, Ruchel Q, Garcia JR, Perboni LT, 2017. Oxidative stress caused by the use of preemergent herbicides in rice crops. Revista Ciência Agronômica, 48: 358-364.
  • Lee WQ, Affandi ISM, Feroz SR, Mohamad SB, Tayyab S, 2017. Evaluation of pendimethalin binding to human serum albumin ınsights from spectroscopic and molecular modeling approach. Journal of Biochemical and Molecular Toxicology, 31: 1-9.
  • Li Y, Huang L, Liu X, Li X, Tan H, 2020. Exogenous salicylic acid alleviates halosulfuron methyl toxicity by coordinating the antioxidant system and ımproving photosynthesis in soybean (Glycine max Merr.). Acta Physiologiae Plantarum, 42: 1-10.
  • Liu F, Guo DD, Tu YH, Xue YR, Gao Y, Guo ML, 2016. Identification of reference genes for gene expression normalization in safflower (Carthamus tinctorius). Revista Brasileira de Farmacognosia, 26: 564-570.
  • Livak KJ, Schmittgen TD, 2001. Analysis of Relative Gene Expression Data Using RealTime Quantitative PCR and the 2 Δ Δ CT Method. Methods, 25: 402-408.
  • Mosblech A, Feussner I, Heilmann I, 2009. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 47(6): 511-517.
  • Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S, 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. The Plant Cell, 20:768-785.
  • Namdjoyan S, Kermanian H, Soorki AA, Modarres-Tabatabaei S, Elyasi N, 2017. Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). Ecotoxicology, 26: 752-761.
  • Namdjoyan S, Soorki AA, Elyasi N, Kazemi N, Simaei M, 2020. Melatonin alleviates lead ınduced oxidative damage in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicology, 29: 108-118.
  • Nazari M, Mirlohi A, Majidi MM, 2017. Effects of drought stress on oil characteristics of Carthamus species. Journal of the American Oil Chemists' Society, 94: 247-256.
  • Nogales-Delgado S, Encinar JM, González JF, 2019. Safflower biodiesel ımprovement of ıts oxidative stability by using BHA and TBHQ. Energies, 12: 1-13.
  • Obenland OA, Riechers DE, 2020. Identification of chromosomes in Triticum aestivum possessing genes that confer tolerance to the synthetic auxin herbicide halauxifen-methyl. Scientific Reports, 10(8713): 1-10.
  • Radwan DEM, Mohamed AK, Fayez KA, Abdelrahman AM, 2019. Oxidative stress caused by basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon, 5: 1-8.
  • Rani A, Panwar A, Sathe M, Chandrashekhara KA, Kush A, 2018. Biofortification of safflower an oil seed crop engineered for ala targeting better sustainability and plant based omega 3 fatty acids. Transgenic Research, 27: 253-263.
  • Riechers DE, Kreuz K, Zhang Q, 2010. Detoxification without intoxication: Herbicide safeners activate plant defense gene expression. Plant Physiology, 153: 3-13.
  • Spormann S, Soares C, Fidalgo F, 2019. Salicylic acid alleviates glyphosate ınduced oxidative stress in Hordeum vulgare L. Journal of Environmental Management, 241: 226-234.
  • Verma S, Srivastava A, 2018. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. a biomarker based study. Chemosphere, 206: 248-254.
  • Wang J, Zhang C, Shi Y, Long M, Islam F, Yang C, Yang S, He Y, Zhou W, 2020. Evaluation of quinclorac toxicity and alleviation by salicylic acid in rice seedlings using ground based visible near infrared hyperspectral imaging. Plant Methods, 16: 1-16.
  • Yaman M, Nalbantoğlu B, 2019. Investigation of the effects of the fenoxaprop-p-ethyl herbicide and salicylic acid on the ascorbic acid and vitamin B6 vitamers in wheat leaves. Journal of Plant Growth Regulation, 39: 729-737.
  • Yüzbaşıoğlu E, Dalyan E, 2019. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiology and Biochemistry, 135: 322-330.
  • Zemour K, Labdelli A, Adda A, Dellal A, Talou T, Merah O, 2019. Phenol content and antioxidant and antiaging activity of safflower seed oil (Carthamus tinctorius L.). Cosmetics, 6: 1-11.
  • Zhang Q, Xu F, Lambert KN, Riechers DE, 2007. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification in Triticum tauschii seedling tissues. Proteomics, 7: 1261-1278.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Authors

Ekrem Akbulut 0000-0002-7526-9835

Publication Date December 15, 2020
Submission Date June 14, 2020
Acceptance Date June 25, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Akbulut, E. (2020). Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi. Journal of the Institute of Science and Technology, 10(4), 2915-2925. https://doi.org/10.21597/jist.752676
AMA Akbulut E. Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi. J. Inst. Sci. and Tech. December 2020;10(4):2915-2925. doi:10.21597/jist.752676
Chicago Akbulut, Ekrem. “Pendimethalin Ve Salisilik Asit Uygulamalarının Carthamus Tinctorius L. Cv. ‘Remzibey’ Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi”. Journal of the Institute of Science and Technology 10, no. 4 (December 2020): 2915-25. https://doi.org/10.21597/jist.752676.
EndNote Akbulut E (December 1, 2020) Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi. Journal of the Institute of Science and Technology 10 4 2915–2925.
IEEE E. Akbulut, “Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. ‘Remzibey’ Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi”, J. Inst. Sci. and Tech., vol. 10, no. 4, pp. 2915–2925, 2020, doi: 10.21597/jist.752676.
ISNAD Akbulut, Ekrem. “Pendimethalin Ve Salisilik Asit Uygulamalarının Carthamus Tinctorius L. Cv. ‘Remzibey’ Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi”. Journal of the Institute of Science and Technology 10/4 (December 2020), 2915-2925. https://doi.org/10.21597/jist.752676.
JAMA Akbulut E. Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi. J. Inst. Sci. and Tech. 2020;10:2915–2925.
MLA Akbulut, Ekrem. “Pendimethalin Ve Salisilik Asit Uygulamalarının Carthamus Tinctorius L. Cv. ‘Remzibey’ Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi”. Journal of the Institute of Science and Technology, vol. 10, no. 4, 2020, pp. 2915-2, doi:10.21597/jist.752676.
Vancouver Akbulut E. Pendimethalin ve Salisilik Asit Uygulamalarının Carthamus tinctorius L. cv. “Remzibey” Yağ Asidi Desatüraz Genlerinin Anlatımı Üzerine Etkisi. J. Inst. Sci. and Tech. 2020;10(4):2915-2.