Research Article
BibTex RIS Cite

Farklı Agregalarla Üretilen Silindirle Sıkıştırılmış Betonların Donma-Çözülme Direncinin Araştırılması

Year 2021, Volume: 11 Issue: 4, 2849 - 2859, 15.12.2021
https://doi.org/10.21597/jist.908579

Abstract

Silindirle sıkıştırılmış betonlar (SSB), geleneksel beton üretiminde kullanılan hammaddelerin kullanılmasıyla üretilebilen, üretim tekniğiyle kuru karışımla çalışılmaya olanak tanıyan, yol ve baraj inşaatlarında tercih edilen bir yapı malzemesidir. Bu deneysel çalışmada, silindirle sıkıştırılmış beton üretiminde farklı agrega kullanımının, betonun donma-çözülme direncine etkisi araştırılmıştır. Silindirle sıkıştırılmış beton üretiminde iri agrega olarak dolomit, bazalt, mermer ve kalker kullanılmıştır. Silindirle sıkıştırılmış beton üretiminde, su/çimento oranı 0.35 ve taze halde çökme değeri sıfır olan beton karışımları hazırlanmış ve bu karışımlar iki kademede sıkıştırılarak kalıba yerleştirilmiştir. Numuneler, dökümden bir gün sonra kalıptan çıkartılarak kür havuzunda bekletilmiştir. Kirece doygun suda 90 gün boyunca bekletilen suya doygun küp numuneler, +20°C sıcaklıkta 12 saat, -20°C sıcaklıkta 12 saat olmak üzere tekrarlayan donma-çözülme çevrimlerine maruz bırakılmıştır. 25, 50 ve 75 çevrim sonunda silindirle sıkıştırılmış beton numunelerdeki ağırlık ve ultrases geçiş hızları kaydedilmiştir. 75 çevrim sonunda numunelerin ortalama basınç dayanımı ile verilerdeki standart sapma ve değişkenlik katsayısı değerleri belirlenmiştir. 75 donma-çözülme döngüsü sonunda, basınç dayanımı kaybı, dolomit agregası ile üretilen numunelerde %12.2, bazalt ile üretilenlerde %13.8, mermer ile üretilenlerde %3.3, kalker ile üretilenlerde %4.6 olarak belirlenmiştir. Deneysel çalışmalar sonucunda, agrega türünün silindirle sıkıştırılmış betonların donma-çözülme dayanıklılığı üzerinde etkili olduğu görülmüştür.

Supporting Institution

-

Project Number

-

Thanks

Yazarlar, deneysel çalışmalardaki katkılarından ötürü İnş. Yük. Müh. Ahmet Okan Savaş’a teşekkür ederler.

References

  • Abbaszadeh R, Modarres A, 2017. Freeze-Thaw Durability of Non-Air-Entrained Roller Compacted Concrete Designed for Pavement Containing Cement Kiln Dust. Cold Regions Science and Technology, 141, 16-27.
  • Algin Z, Gerginci S, 2020. Freeze-Thaw Resistance and Water Permeability Properties of Roller Compacted Concrete Produced with Macro Synthetic Fibre. Construction and Building Materials, 234, 117382, 1-9.
  • Amarnath Y, Ganesh Babu K, 2011. Transport Properties of High Volume Fly Ash Roller Compacted Concrete. Cement and Concrete Composites, 33 (10): 1057-1062.
  • ASTM C 1435, 2014. “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer”. American Society for Testing and Materials, ASTM International, USA.
  • ASTM C 597, 2002. “Standard Test Method For Pulse Velocity Through Concete”. American Society for Testing and Materials, ASTM International, USA.
  • Delatte N, Storey C, 2005. Effects of Density and Mixture Proportions on Freeze-Thaw Durability of Roller-Compacted Concrete Pavement. Transportation Research Record Journal of the Transportation Research Board, 1914 (1): 45-52.
  • Dolen TP, 1991. Freezing and Thawing Durability of Roller-Compacted Concrete. ACI Symposium Publication, 126, 101-114.
  • Ghafoori N, Cai Y, 1998. Laboratory-Made Roller Compacted Concretes Containing Dry Bottom Ash: Part II—Long-Term Durability. Materials Journal, 95 (3): 244-251.
  • Hazaree C, Ceylan H, Wang K, 2011. Influences of Mixture Composition on Properties and Freeze-Thaw Resistance of RCC. Construction and Building Materials, 25, 313-319.
  • Janssen DJ, 1997. The Influence of Material Parameters on Freeze-Thaw Resistance with and without Deicing Salt, Frost Resistance of Concrete. Edited by M.J. Setzer and R. Auberg, E&FN SPON, 3-10, New York, USA.
  • Karayolları Genel Müdürlüğü Teknik Şartnamesi, 2006. Karayolları Genel Müdürlüğü, Ankara.
  • Kilic I, Gok SG, 2021a. A Study on Investigating the Properties of Alkali-Activated Roller Compacted Concretes, Advances in Concrete Construction, 12 (2): 117-123.
  • Kilic I, Gok SG, 2021b. Strength and Durability of Roller Compacted Concrete with Different Types and Addition Rates of Polypropylene Fibers, Revista de La Construcción, 20 (2): 205-214.
  • Luhr DR, 2006. Frost Durability of Roller-Compacted Concrete Pavements: Research Synopsis. 1-4.
  • Mardani-Aghabaglou A, Andıç-Çakır Ö, Ramyar K, 2013. Freeze–thaw Resistance and Transport Properties of High-Volume Fly Ash Roller Compacted Concrete Designed by Maximum Density Method. Cement and Concrete Composites, 37, 259-266.
  • Mardani-Aghabaglou A, Bayqra SH, Özen S, Altun MG, Faqiri ZA, Ramyar K, 2020. Silindirle Sıkıştırılmış Beton Karışımlarının Tasarım Yöntemleri ve Yapılan Çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26 (3): 419-431.
  • Mindess S, Young JF, Darwin D, 2003. Concrete, Second Edition, Prentice Hall Pearson Education Inc., New Jersey, ABD.
  • Pei-wei G, Sheng-xing W, Ping-hua L, Zhong-ru W, Ming-shu T, 2006. The Characteristics of Air Void and Frost Resistance of RCC with Fly Ash and Expansive Agent. Construction and Building Materials, 20 (8): 586-590.
  • Pigeon M, Marchand V, Pleau R, 1996. Frost Resistant Concrete. Construction and Building Materials, 10 (5): 339-347.
  • Portland Cement Association, 2004. Frost Durability of Roller-Compacted Concrete Pavements, Research and Development Bulletin RD 135, Service d’Expertise en Matériaux Inc., Canada.
  • Rad SAM, Modarres A, 2017. Durability Properties of Non-Air Entrained Roller Compacted Concrete Pavement Containing Coal Waste Ash in Presence of De-icing Salts. Cold Regions Science and Technology, 137, 48-59.
  • Ragan SA, 1986. Evaluation of the Frost Resistance of Roller-Compacted Concrete Pavements. Transportation Research Record 1062, TRB, National Research Council, 25-32, Washington.
  • Savaş AO, 2019. Farklı Tür Agregalarla Üretilen Silindirle Sıkıştırılmış Betonların Fiziksel ve Mekanik Özelliklerinin Araştırılması, Kırklareli Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Şahin R, 2003. Normal Portland Çimentolu Betonların Don Direncinin Taguchi Yöntemi ile Optimizasyonu ve Hasar Analizi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Şengül Ö, Taşdemir C, Koruç Ş, Sönmez R, 2003. Agrega Türünün Betonun Donma-Çözülme Dayanıklılığına Etkisi. III. Ulusal Kırmataş Sempozyumu, 3-4 Aralık 2003, İstanbul, 43-50.
  • TS 706 EN 12620+A1, 2009. “Beton agregaları”. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3, 2003. “Sertleşmiş Beton Deney Numunelerinde Basınç Dayanımının Tayini” Türk Standartları Enstitüsü, Ankara.
  • Zhang W, Zhang J, Chen S, Gong S, 2018. Degradation of Roller-Compacted Concrete Subjected to Freeze-Thaw Cycles and Immersion in Potassium Acetate Solution. Advances in Materials Science and Engineering, 2018, Article ID 4282181, 8 pages. DOI: 10.1155/2018/4282181.

Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates

Year 2021, Volume: 11 Issue: 4, 2849 - 2859, 15.12.2021
https://doi.org/10.21597/jist.908579

Abstract

Roller compacted concretes are a building material that can be produced using the raw materials used in traditional concrete production, which allows working with dry mix with the production technique, and is preferred for use in road and dam constructions. In this experimental study, the effect of using different aggregates in roller compacted concretes on the freeze-thaw resistance of concrete was investigated. Dolomite, basalt, marble and limestone were used as coarse aggregates in the production of roller compacted concrete. In roller compacted concrete production, concrete mixtures with zero slump value and water/cement ratio of 0.35 were prepared, and these mixtures were compressed in two stages and placed in the mold. The specimens were demolded 24 h after casting and moist-cured. The water-saturated cube specimens, which were kept in lime-saturated water for 90 days, were subjected to repeated freeze-thaw cycles of 12 hours at +20°C and 12 hours at -20°C. At the end of 25, 50 and 75 cycles, the weight and ultrasonic pulse velocity (UPV) of roller compacted concrete specimens were recorded. At the end of 75 cycles, the average compressive strength, standard deviation and coefficient of variation values of the specimens were determined. At the end of 75 freeze-thaw cycles, the compressive strength loss was determined as 12.2% in the samples produced with dolomite aggregate, 13.8% in those produced with basalt, 3.3% in those produced with marble, and 4.6% in those produced with limestone. As a result of the experimental study, it was observed that the aggregate type was effective on the freeze-thaw resistance of the roller compacted concretes.

Project Number

-

References

  • Abbaszadeh R, Modarres A, 2017. Freeze-Thaw Durability of Non-Air-Entrained Roller Compacted Concrete Designed for Pavement Containing Cement Kiln Dust. Cold Regions Science and Technology, 141, 16-27.
  • Algin Z, Gerginci S, 2020. Freeze-Thaw Resistance and Water Permeability Properties of Roller Compacted Concrete Produced with Macro Synthetic Fibre. Construction and Building Materials, 234, 117382, 1-9.
  • Amarnath Y, Ganesh Babu K, 2011. Transport Properties of High Volume Fly Ash Roller Compacted Concrete. Cement and Concrete Composites, 33 (10): 1057-1062.
  • ASTM C 1435, 2014. “Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer”. American Society for Testing and Materials, ASTM International, USA.
  • ASTM C 597, 2002. “Standard Test Method For Pulse Velocity Through Concete”. American Society for Testing and Materials, ASTM International, USA.
  • Delatte N, Storey C, 2005. Effects of Density and Mixture Proportions on Freeze-Thaw Durability of Roller-Compacted Concrete Pavement. Transportation Research Record Journal of the Transportation Research Board, 1914 (1): 45-52.
  • Dolen TP, 1991. Freezing and Thawing Durability of Roller-Compacted Concrete. ACI Symposium Publication, 126, 101-114.
  • Ghafoori N, Cai Y, 1998. Laboratory-Made Roller Compacted Concretes Containing Dry Bottom Ash: Part II—Long-Term Durability. Materials Journal, 95 (3): 244-251.
  • Hazaree C, Ceylan H, Wang K, 2011. Influences of Mixture Composition on Properties and Freeze-Thaw Resistance of RCC. Construction and Building Materials, 25, 313-319.
  • Janssen DJ, 1997. The Influence of Material Parameters on Freeze-Thaw Resistance with and without Deicing Salt, Frost Resistance of Concrete. Edited by M.J. Setzer and R. Auberg, E&FN SPON, 3-10, New York, USA.
  • Karayolları Genel Müdürlüğü Teknik Şartnamesi, 2006. Karayolları Genel Müdürlüğü, Ankara.
  • Kilic I, Gok SG, 2021a. A Study on Investigating the Properties of Alkali-Activated Roller Compacted Concretes, Advances in Concrete Construction, 12 (2): 117-123.
  • Kilic I, Gok SG, 2021b. Strength and Durability of Roller Compacted Concrete with Different Types and Addition Rates of Polypropylene Fibers, Revista de La Construcción, 20 (2): 205-214.
  • Luhr DR, 2006. Frost Durability of Roller-Compacted Concrete Pavements: Research Synopsis. 1-4.
  • Mardani-Aghabaglou A, Andıç-Çakır Ö, Ramyar K, 2013. Freeze–thaw Resistance and Transport Properties of High-Volume Fly Ash Roller Compacted Concrete Designed by Maximum Density Method. Cement and Concrete Composites, 37, 259-266.
  • Mardani-Aghabaglou A, Bayqra SH, Özen S, Altun MG, Faqiri ZA, Ramyar K, 2020. Silindirle Sıkıştırılmış Beton Karışımlarının Tasarım Yöntemleri ve Yapılan Çalışmalar. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26 (3): 419-431.
  • Mindess S, Young JF, Darwin D, 2003. Concrete, Second Edition, Prentice Hall Pearson Education Inc., New Jersey, ABD.
  • Pei-wei G, Sheng-xing W, Ping-hua L, Zhong-ru W, Ming-shu T, 2006. The Characteristics of Air Void and Frost Resistance of RCC with Fly Ash and Expansive Agent. Construction and Building Materials, 20 (8): 586-590.
  • Pigeon M, Marchand V, Pleau R, 1996. Frost Resistant Concrete. Construction and Building Materials, 10 (5): 339-347.
  • Portland Cement Association, 2004. Frost Durability of Roller-Compacted Concrete Pavements, Research and Development Bulletin RD 135, Service d’Expertise en Matériaux Inc., Canada.
  • Rad SAM, Modarres A, 2017. Durability Properties of Non-Air Entrained Roller Compacted Concrete Pavement Containing Coal Waste Ash in Presence of De-icing Salts. Cold Regions Science and Technology, 137, 48-59.
  • Ragan SA, 1986. Evaluation of the Frost Resistance of Roller-Compacted Concrete Pavements. Transportation Research Record 1062, TRB, National Research Council, 25-32, Washington.
  • Savaş AO, 2019. Farklı Tür Agregalarla Üretilen Silindirle Sıkıştırılmış Betonların Fiziksel ve Mekanik Özelliklerinin Araştırılması, Kırklareli Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi (Basılmış).
  • Şahin R, 2003. Normal Portland Çimentolu Betonların Don Direncinin Taguchi Yöntemi ile Optimizasyonu ve Hasar Analizi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi (Basılmış).
  • Şengül Ö, Taşdemir C, Koruç Ş, Sönmez R, 2003. Agrega Türünün Betonun Donma-Çözülme Dayanıklılığına Etkisi. III. Ulusal Kırmataş Sempozyumu, 3-4 Aralık 2003, İstanbul, 43-50.
  • TS 706 EN 12620+A1, 2009. “Beton agregaları”. Türk Standartları Enstitüsü, Ankara.
  • TS EN 12390-3, 2003. “Sertleşmiş Beton Deney Numunelerinde Basınç Dayanımının Tayini” Türk Standartları Enstitüsü, Ankara.
  • Zhang W, Zhang J, Chen S, Gong S, 2018. Degradation of Roller-Compacted Concrete Subjected to Freeze-Thaw Cycles and Immersion in Potassium Acetate Solution. Advances in Materials Science and Engineering, 2018, Article ID 4282181, 8 pages. DOI: 10.1155/2018/4282181.
There are 28 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

İsmail Kılıç 0000-0001-5556-512X

Saadet Gökçe Gök 0000-0002-7879-1610

Project Number -
Publication Date December 15, 2021
Submission Date April 2, 2021
Acceptance Date September 13, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Kılıç, İ., & Gök, S. G. (2021). Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates. Journal of the Institute of Science and Technology, 11(4), 2849-2859. https://doi.org/10.21597/jist.908579
AMA Kılıç İ, Gök SG. Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates. J. Inst. Sci. and Tech. December 2021;11(4):2849-2859. doi:10.21597/jist.908579
Chicago Kılıç, İsmail, and Saadet Gökçe Gök. “Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced With Different Aggregates”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2849-59. https://doi.org/10.21597/jist.908579.
EndNote Kılıç İ, Gök SG (December 1, 2021) Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates. Journal of the Institute of Science and Technology 11 4 2849–2859.
IEEE İ. Kılıç and S. G. Gök, “Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2849–2859, 2021, doi: 10.21597/jist.908579.
ISNAD Kılıç, İsmail - Gök, Saadet Gökçe. “Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced With Different Aggregates”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2849-2859. https://doi.org/10.21597/jist.908579.
JAMA Kılıç İ, Gök SG. Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates. J. Inst. Sci. and Tech. 2021;11:2849–2859.
MLA Kılıç, İsmail and Saadet Gökçe Gök. “Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced With Different Aggregates”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2849-5, doi:10.21597/jist.908579.
Vancouver Kılıç İ, Gök SG. Investigation of Freeze-Thaw Resistance of Roller Compacted Concretes Produced with Different Aggregates. J. Inst. Sci. and Tech. 2021;11(4):2849-5.