Research Article
BibTex RIS Cite

Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi

Year 2021, Volume: 11 Issue: 4, 2903 - 2915, 15.12.2021
https://doi.org/10.21597/jist.910689

Abstract

Bu çalışmada ilk olarak kalkon grubu içeren yeni bir akrilamit monomeri sentezlendi. Daha sonra serbest radikalik polimermerizasyon yöntemine göre dikümil peroksit başlatıcı varlığında homopolimeri hazırlandı. Elde edilen polimerin termal özelliklerini incelemek ve bozunma aktivasyon enerjinin belirlenebilmesi için farklı ısıtma hızlarında TGA ölçümleri alındı. Tek basamaklı bozunma gösteren polimerin Flynn-Wall-Ozawa yöntemine göre ortalama aktivasyon enerjisi hesaplandı. Karşılaştırmalı TGA eğrilerinden 0.02-0.5 dönüşüm aralığında Flynn-Wall-Ozawa eğrileri oluşturuldu ve ortalama aktivasyon enerjisi 127.03 kJ mol-1 olarak belirlendi. Polimerin dielektrik özellikleri 1-200 kHz frekans aralığında faklı sıcaklıklarda empedans analizör ile incelendi. Oda sıcaklığında polimerin 1 kHz’deki dielektrik sabiti değeri 7.51 iken daha yüksek frekanslara çıkıldıkça bu değer azalmaktadır. 200 kHz değerinde polimerin dielektrik sabiti 7.33 olarak kaydedilmiştir. 10 kHz sabit frekansta oda sıcaklığında 7.44 olarak hesaplanan dielektrik sabiti sıcaklığın artmasıyla birlikte artış göstermiş, 50 oC’ 10.48 ve 60 oC için 14.06 olarak hesaplanmıştır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

KRMYO.19.01

References

  • Allcock HR, Cameron CG, 1994. Synthesis of photo-cross-linkablechalcone-bearing polyphosphazenes. Macromolecules, 27: 3131–3135.
  • Arun A, Reddy BSR, 2004. Photocrosslinkable polymers based on4-[5-(4-hydroxyphenyl)-3-oxopenta-1,4-dienyl] phenyl-2-meth-acrylate: photocrosslinking studies and reactivity ratios withvinylcyclohexane. European Polymer Journal, 40: 589–597.
  • Barım G, Altun O, Yayla MG, 2015. Methacrylate Polymers Having Pendant Chalcone Moieties: Monomer Reactivity Ratios, Thermal and Optical Properties. Polymer(Korea), 39: 13-22.
  • Biryan F, 2019. Kalkon ve Hidroksil Yan Grupları İçeren Yeni Metakrilat Polimerinin Sentezi, Karakterizasyonu, Termal ve Elektriksel Davranışları. AKÜ FEMÜBİD, 544-555.
  • Biryan F, Pıhtılı G, 2020. Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. Journal of Thermal Analysis and Calorimetry, 139, 3857-3870.
  • Celik T, Coskun MF, 2018. Dielectric and thermal properties of the methacrylate polymer bearing chalcone side group. Journal of Molecular Structure, 1157, 239-246.
  • Cho SH, Lim HS, Jeon BK, Ko JM, Kim WG, Lee JY, 2008. Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds. Macromolecular Research, 16: 31-35.
  • Coats AW, Redfen JP, 1964. Kinetic parameters from thermogravimetric data. Nature, 201: 68.
  • Doyle CD, 1961. Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15): 285–92.
  • Everard CD, Fagan CC, O’Donnell CP, O’Callaghan DJ, Lyng JG, 2006. Dielectric properties of process cheese from 0.3 to 3GHz. Journal of Food Engineering, 75: 415-422.
  • Flynn JH, Wall LA, 1966. General treatment of the thermogravimetry of polymers. Journal of Research Natural Bureu Standantards A Physical Chemistry, 70A(6): 487–523.
  • Funiss BS, Hannford AJ, Smith PWG, Tatchell AR, 2004. Vogel’s Textbook of Practical Organic Chemistry. Longman, 5th ed., 1032–1035. London.
  • Gasparovie L, Labovsky J, Markos J, Jelemensky L, 2012. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chemical and Biochemical Engineering Quarterly, 26: 45–53.
  • Gupta GK, Mondal MK, 2019. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. Journal of Thermal Analysis and Calorimetry, 137: 1431–1441.
  • Gurgenç T, Biryan F, 2020. Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. Journal of Polymer Research, 27:194.
  • Harborne J, Mabry TJ, Mabry H, 1975. The Flavonoids. Chapman and Hall, 442, London.
  • Hwang D, Hyun J, Jo G, Koh D, Lim Y. 2011. Synthesis and complete assignment of NMR data of 20 chalcones. Magnetic Resonance Chemistry, 49: 41-45.
  • Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR, 2006. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic and Medicinal Chemistry, 14:3491-3495.
  • Moussa BA, 2000. Determination of some aminobenzoic acid derivatives: glafenine and metoclopramide. Journal of Pharmaceutical and Biomedical Analysis, 23: 1045-1055.
  • Ramya, CS, Savitha, T, Selvasekharapandian, S, Kumar GH, 2005. Transport Mechanism of Cu-ion Conducting PVA Based Solid-Polymer Electrolyte. Ionics, 11: 436-441.
  • Tamilvanan M, Pandurangan A, Subramanian K, Reddy BSR, 2008. Synthesis and characterization of mono‐ and di‐methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety. Polymers and Advanced Technologies, 19: 1218-1225.
  • Venkatesh M, Ravi P, Surya P, 2013. Tewari isoconversional kinetic analysis of decomposition of nitroimidazoles: friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117: 10162–9.
  • Wendlandt WW, 1986. Thermal analysis. Wiley, 3rd ed. London.
  • Yakuphanoglu F, Okutan M, Zhuang Q, Han Z, 2005. The dielectric spectroscopy and surface morphology studies in a new conjugated polymer poly(benzobisoxazole-2,6-diylvinylene), Physica B: Condensed Matter, 365: 13-19.

Preparation of a New Acrylamide Polymer Containing Chalcone Croup, Investigation of Its Kinetic and Dielectric Properties

Year 2021, Volume: 11 Issue: 4, 2903 - 2915, 15.12.2021
https://doi.org/10.21597/jist.910689

Abstract

In this study, a new acrylamide monomer containing chalcone group was synthesized and a homopolymer was prepared according to free radical polymerization method in the presence of dicumyl peroxide initiator. In this study, a new acrylamide monomer containing chalcone group was synthesized and a homopolymer was prepared according to free radical polymerization method in the presence of dicumyl peroxide initiator. TGA measurements were taken at different heating rates to examine the thermal properties of the polymer and determine the degradation activation energy. The average activation energy of the one-step degradation polymer was calculated using the Flynn-Ozawa method. Flynn-Wall-Ozawa curves were generated from the comparative TGA curves in the range of 0.02-0.5 transformation, and the average activation energy was determined as 127.03 kJ mol-1. The dielectric properties of the polymer were examined with an impedance analyzer in the frequency range of 1-200 kHz at different temperatures. While the dielectric constant value of the polymer at 1 kHz at room temperature is 7.51, this value decreases towards higher frequencies. The dielectric constant of the polymer at 200 kHz was recorded as 7.33. It was determined that the dielectric constant calculated as 7.44 at 10 kHz fixed frequency at room temperature increased to 10.48 for 50 oC and 14.06 for 60 oC with the increase of temperature.

Project Number

KRMYO.19.01

References

  • Allcock HR, Cameron CG, 1994. Synthesis of photo-cross-linkablechalcone-bearing polyphosphazenes. Macromolecules, 27: 3131–3135.
  • Arun A, Reddy BSR, 2004. Photocrosslinkable polymers based on4-[5-(4-hydroxyphenyl)-3-oxopenta-1,4-dienyl] phenyl-2-meth-acrylate: photocrosslinking studies and reactivity ratios withvinylcyclohexane. European Polymer Journal, 40: 589–597.
  • Barım G, Altun O, Yayla MG, 2015. Methacrylate Polymers Having Pendant Chalcone Moieties: Monomer Reactivity Ratios, Thermal and Optical Properties. Polymer(Korea), 39: 13-22.
  • Biryan F, 2019. Kalkon ve Hidroksil Yan Grupları İçeren Yeni Metakrilat Polimerinin Sentezi, Karakterizasyonu, Termal ve Elektriksel Davranışları. AKÜ FEMÜBİD, 544-555.
  • Biryan F, Pıhtılı G, 2020. Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. Journal of Thermal Analysis and Calorimetry, 139, 3857-3870.
  • Celik T, Coskun MF, 2018. Dielectric and thermal properties of the methacrylate polymer bearing chalcone side group. Journal of Molecular Structure, 1157, 239-246.
  • Cho SH, Lim HS, Jeon BK, Ko JM, Kim WG, Lee JY, 2008. Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds. Macromolecular Research, 16: 31-35.
  • Coats AW, Redfen JP, 1964. Kinetic parameters from thermogravimetric data. Nature, 201: 68.
  • Doyle CD, 1961. Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15): 285–92.
  • Everard CD, Fagan CC, O’Donnell CP, O’Callaghan DJ, Lyng JG, 2006. Dielectric properties of process cheese from 0.3 to 3GHz. Journal of Food Engineering, 75: 415-422.
  • Flynn JH, Wall LA, 1966. General treatment of the thermogravimetry of polymers. Journal of Research Natural Bureu Standantards A Physical Chemistry, 70A(6): 487–523.
  • Funiss BS, Hannford AJ, Smith PWG, Tatchell AR, 2004. Vogel’s Textbook of Practical Organic Chemistry. Longman, 5th ed., 1032–1035. London.
  • Gasparovie L, Labovsky J, Markos J, Jelemensky L, 2012. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chemical and Biochemical Engineering Quarterly, 26: 45–53.
  • Gupta GK, Mondal MK, 2019. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. Journal of Thermal Analysis and Calorimetry, 137: 1431–1441.
  • Gurgenç T, Biryan F, 2020. Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. Journal of Polymer Research, 27:194.
  • Harborne J, Mabry TJ, Mabry H, 1975. The Flavonoids. Chapman and Hall, 442, London.
  • Hwang D, Hyun J, Jo G, Koh D, Lim Y. 2011. Synthesis and complete assignment of NMR data of 20 chalcones. Magnetic Resonance Chemistry, 49: 41-45.
  • Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR, 2006. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic and Medicinal Chemistry, 14:3491-3495.
  • Moussa BA, 2000. Determination of some aminobenzoic acid derivatives: glafenine and metoclopramide. Journal of Pharmaceutical and Biomedical Analysis, 23: 1045-1055.
  • Ramya, CS, Savitha, T, Selvasekharapandian, S, Kumar GH, 2005. Transport Mechanism of Cu-ion Conducting PVA Based Solid-Polymer Electrolyte. Ionics, 11: 436-441.
  • Tamilvanan M, Pandurangan A, Subramanian K, Reddy BSR, 2008. Synthesis and characterization of mono‐ and di‐methoxy substituted acrylate polymers containing photocrosslinkable pendant chalcone moiety. Polymers and Advanced Technologies, 19: 1218-1225.
  • Venkatesh M, Ravi P, Surya P, 2013. Tewari isoconversional kinetic analysis of decomposition of nitroimidazoles: friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117: 10162–9.
  • Wendlandt WW, 1986. Thermal analysis. Wiley, 3rd ed. London.
  • Yakuphanoglu F, Okutan M, Zhuang Q, Han Z, 2005. The dielectric spectroscopy and surface morphology studies in a new conjugated polymer poly(benzobisoxazole-2,6-diylvinylene), Physica B: Condensed Matter, 365: 13-19.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Eray Çalışkan 0000-0003-2399-4100

Fatih Biryan 0000-0001-9198-3329

Kenan Koran 0000-0002-2218-7211

Project Number KRMYO.19.01
Publication Date December 15, 2021
Submission Date April 7, 2021
Acceptance Date July 10, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Çalışkan, E., Biryan, F., & Koran, K. (2021). Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2903-2915. https://doi.org/10.21597/jist.910689
AMA Çalışkan E, Biryan F, Koran K. Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. December 2021;11(4):2903-2915. doi:10.21597/jist.910689
Chicago Çalışkan, Eray, Fatih Biryan, and Kenan Koran. “Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2903-15. https://doi.org/10.21597/jist.910689.
EndNote Çalışkan E, Biryan F, Koran K (December 1, 2021) Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 11 4 2903–2915.
IEEE E. Çalışkan, F. Biryan, and K. Koran, “Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2903–2915, 2021, doi: 10.21597/jist.910689.
ISNAD Çalışkan, Eray et al. “Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2903-2915. https://doi.org/10.21597/jist.910689.
JAMA Çalışkan E, Biryan F, Koran K. Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11:2903–2915.
MLA Çalışkan, Eray et al. “Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik Ve Dielektrik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2903-15, doi:10.21597/jist.910689.
Vancouver Çalışkan E, Biryan F, Koran K. Kalkon Grubu Taşıyan Yeni Akrilamit Polimerinin Hazırlanması, Kinetik ve Dielektrik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11(4):2903-15.