Research Article
BibTex RIS Cite

Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri

Year 2021, Volume: 11 Issue: 4, 3203 - 3212, 15.12.2021
https://doi.org/10.21597/jist.937385

Abstract

Kinoa (Chenopodium quinoa Willd.) kuraklık gibi olumsuz çevre şartlarına dayanıklı bir bitkidir. Ancak bu dayanıklılık genotiplere bağlı olarak değişmektedir. Bu araştırma farklı kinoa genotiplerinin sürgün ve kök büyümesi üzerine değişik sulama seviyelerinin etkisini belirlemek amacıyla planlanmıştır. Araştırma Atatürk Üniversitesi Ziraat Fakültesi seralarında tesadüf parselleri deneme desenine göre üç tekrarlamalı olarak yürütülmüştür. Farklı orijinlere sahip 10 çeşit kullanılmış ve fide döneminde 5 farklı sulama seviyesi (tarla kapasitesinde sulama, tarla kapasitesinin %50, 25, 10 ve 5’i oranında sulama) uygulanmıştır. Uygulamaların etkilerini belirlemek için sürgün ve kök uzunluğu, sürgün ve kök kuru ağırlıkları, kök/sürgün oranları ve kuraklık tolerans değerleri belirlenmiştir. Kinoada kök ve sürgün gelişmesi çeşitlere ve sulama seviyelerine bağlı olarak önemli değişimler göstermiştir. Sulama seviyesi azaldıkça sürgün ve kök uzunlukları ile kuru ağırlıkları ve kurağa tolerans yüzdeleri düşmüştür. Kök/sürgün oranı ise tarla kapasitesinin %50’si seviyesindeki sulamada daha yüksek bulunmuştur. Su kısıtlamasına çeşitlerin tepkileri farklılık göstermiştir. Titicaca, Sandoval Mix, Moqu Arrochilla ve Mint Vanilla kuraklık tolerans yüzdesi yüksek olan çeşitler olarak belirlenmiştir.
olarak belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

TOVAG-214O232

Thanks

Bu makale TÜBİTAK tarafında desteklenen TOVAG-214O232 nolu projenin sonuçlarından üretilmiştir. Projeye destek sağlayan TÜBİTAK'a teşekkür ederiz.

References

  • Ashraf M, Foolad MR, 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental and Experimental Botany, 59 (2): 206-216.
  • Bertero HD, Vega AJ, Correa G, Jacobsen SE, Mujica A, 2004. Genotype and Genotype-by-Environment Interaction Effects for Grain Yield and Grain Size of Quinoa (Chenopodium quinoa Willd.) as Revealed by Pattern Analysis of International Multienvironment Trials. Field Crops Research, 89: 299-318.
  • Bosque Sanchez H, Lemeur R, Van Damme P, Jacobsen SE, 2003. Ecophysiological Analysis of Drought and Salinity Stress of Quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19: 111-119.
  • Çaygaracı A, Kuşçu H, 2019. Farklı Sulama Suyu Miktarı ve Besin Çözeltisi Uygulamalarının Kinoa (Chenopodium quinoa Willd.) Verim, Bazı Verim Bileşenleri ve Su Kullanım Etkinliği Üzerine Etkisi. KSÜ Tarım ve Doğa Dergisi, 22 (3): 370-380.
  • Earl HJ, 2003. A Precise Gravimetric Method for Simulating Drought Stress In Pot Experiments. Crop Science, 43 (5): 1868-1873.
  • Franco J, 2011. Technology and Knowledge Transfer e-Bulletin. Universidad Politecnica de Cartagena Vol: 2, No: 6.
  • Garcia M, Raes D, Jacobsen SE, 2003. Evapotranspiration Analysis and Irrigation Requirements of Quinoa (Chenopodium quinoa) in the Bolivian Highlands. Agricultural Water Management 60: 119-134.
  • Garcia M, Raes D, Jacobsen SE, Michel T, 2007. Agroclimatic Constraints for Rainfed Agriculture in the Bolivian Altiplano. Journal of Arid Environment 71: 109-121.
  • Geerts S, Raes D, Garcia M, Vacher J, Mamani R, Mendoza J, Huanca R, Morales B, Miranda R, Cusicanqui J, Taboada C, 2008. Introducing Deficit Irrigation to Stabilize Yields of Quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 28: 427-436.
  • Geerts S, Raes D, Garcia M, Del Castillo C, Buytaert W, 2006. Agro-Climatic Suitability Mapping for Crop Production in the Bolivian Altiplano: A Case Study for Quinoa. Agricultural and Forest Meteorology, 129: 399-412.
  • Geren H, Kavut YT, Topçu GD, Ekren S, İştipliler D, 2014. Akdeniz İklimi Koşullarında Yetiştirilen Kinoa (Chenopodium quinoa Willd.)’da Farklı Ekim Zamanlarının Tane Verimi ve Bazı Verim Unsurlarına Etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 51(3): 297-305.
  • Geren H, Geren H, 2015. A Preliminary Study on the Effect of Different Irrigation Water Levels on the Grain Yield and Related Characteristics of Quinoa (Chenopodium quinoa Willd.), 26th International Scientific-Expert Conference of Agriculture and Food Industry, 27-30 September 2015, 61(66/1): 269-272.
  • Gonzalez JA, Gallardo M, Hilal M, Rosa M, Prado, FE, 2009. Physiological Responses of Quinoa (Chenopodium quinoa Willd.) to Drought and Waterlogging Stresses: Dry Matter Partitioning. Botanical Study, 50: 35-42.
  • İnce Kaya Ç, 2010. Akdeniz Bölgesinde Damla Sistemiyle Tatlı ve Tuzlu Su Kullanılarak Uygulanan Farklı Sulama Stratejilerinin Quinoa Bitkisinin Verimiyle Toprakta Tuz Birikimine Etkileri ve Saltmed Modelinin Test Edilmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tarımsal Yapılar ve Sulama Anabilim Dalı, Yüksek Lisans Tezi, Adana.
  • Jacobsen SE, 2003. The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Review International, 19 (1-2): 167-177.
  • Jacobsen SE, Mujica A, Jensen AC, 2003.The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. Food Reviews International, 19: 1-2.
  • Jensen CR, Jacobsen SE, Andersen MN, Nunez N, Andersen SD, Rasmussen L, Mogensen VO, 2000. Leaf Gas Exchange and Water Relations of Field Quinoa (Chenopodium quinoa Willd.) During Soil Drying. European Journal of Agronomy, 13: 11-25.
  • Kinyua M, Njoka EM, Gesimba RM, Birech RJ, 2006. Selection of Drought Tolerant Bread Wheat Genotypes Using Root Characteristics at Seedling Stage. International Journal of Agriculture and Rural Development. School of Agriculture and Agricultural Technology, Federal University of Technology.
  • Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall JA, Jellen EN, Bonfacio A, Fairbanks DJ, Maughan PJ, 2014. Transcriptome Analysis of Drought Induced Stress in Chenopodium quinoa. American Journal of Plant Sciences, 5: 338-357.
  • Razzaghi F, Bahadori-Ghasroldasthi MR, Henriksen S, Spaskhah AR, Jacobsen SE, 2020. Physiological Characteristics and Irrigation Water Productivity of Quinoa (Chenopodium quinoa Willd.) in Response to Deficit Irrigation Imposed at Different Growing Stages-A Field Study from Southern Iran. Journal of Agronomy and crop Science, 206(3): 390-404.
  • Simane B, Struik, PC, Nachit MM, Peacock JM, 1993. Ontogenetic Analysis of Yield Components and Yield Stability of Durum Wheat in Water-Limited Environments. Euphytica, 71(3): 211-219.
  • Stikic R, Jovanovic Z, Marjanovic M, Dordevic S, 2015. The Effect of Drought on Water Regime and Growth of Quinoa (Chenopodium quinoa Willd.). Ratarstvo i Povrtarstvo 52(2): 80-84.
  • Szira F, Bálint AF, Börner A, Galiba G, 2008. Evaluation of Drought‐Related Traits and Screening Methods at Different Developmental Stages in Spring Barley. Journal of Agronomy and Crop Science, 194(5): 334-342.
  • Tan M, Temel S, 2019. Her Yönüyle Kinoa. Önemi, Kullanılması ve Yetiştiriciliği. İksad Yayınevi, Ankara, ISBN: 978-605-7875-88-4, 177 s.
  • Yang A, Akhtar SS, Amjad M, Jacobsen S, 2016. Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. Journal of Agronomy and Crop Science, 202 (6): 445-453.
  • Yin C, Wang X, Duan B, Luo J, Li C, 2004. Early Growth, Dry Matter Allocation and Water Use Efficiency of Two Sympatric Populus Species as Affected by Water Stress. Environmental and Experimental Botany, 53: 315-322.

Effects of Different Irrigation Levels on Shoot and Root Development of Some Quinoa (Chenopodium quinoa Willd.) Genotypes

Year 2021, Volume: 11 Issue: 4, 3203 - 3212, 15.12.2021
https://doi.org/10.21597/jist.937385

Abstract

Quinoa (Chenopodium quinoa Willd.) is a plant resistant to adverse environmental conditions such as drought. However, this resistance varies depending on the genotypes. This research was planned to determine the effect of different irrigation levels on shoot and root growth of different quinoa genotypes. The research was carried out in three replications in Atatürk University Faculty of Agriculture greenhouses according to the completely randomized plots experimental design. 10 varieties with different origins were used and 5 different irrigation levels (irrigation at field capacity, irrigation at the rate of 50, 25, 10 and 5% of the field capacity) were applied during the seedling period. Shoot and root length, shoot and root dry weights, root/shoot ratios and drought tolerance values were determined to determine the effects of the applications. Root and shoot development in quinoa showed significant changes depending on the varieties and irrigation levels. Shoot and root lengths, dry weights and drought tolerance values decreased as the irrigation level decreased. Root/shoot ratio was found higher in irrigation at the level of 50% of the field capacity. The reactions of the varieties to water limitation differed. Titicaca, Sandoval Mix, Moqu Arrochilla and Mint Vanilla have been identified as varieties with high drought tolerance.

Project Number

TOVAG-214O232

References

  • Ashraf M, Foolad MR, 2007. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environmental and Experimental Botany, 59 (2): 206-216.
  • Bertero HD, Vega AJ, Correa G, Jacobsen SE, Mujica A, 2004. Genotype and Genotype-by-Environment Interaction Effects for Grain Yield and Grain Size of Quinoa (Chenopodium quinoa Willd.) as Revealed by Pattern Analysis of International Multienvironment Trials. Field Crops Research, 89: 299-318.
  • Bosque Sanchez H, Lemeur R, Van Damme P, Jacobsen SE, 2003. Ecophysiological Analysis of Drought and Salinity Stress of Quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19: 111-119.
  • Çaygaracı A, Kuşçu H, 2019. Farklı Sulama Suyu Miktarı ve Besin Çözeltisi Uygulamalarının Kinoa (Chenopodium quinoa Willd.) Verim, Bazı Verim Bileşenleri ve Su Kullanım Etkinliği Üzerine Etkisi. KSÜ Tarım ve Doğa Dergisi, 22 (3): 370-380.
  • Earl HJ, 2003. A Precise Gravimetric Method for Simulating Drought Stress In Pot Experiments. Crop Science, 43 (5): 1868-1873.
  • Franco J, 2011. Technology and Knowledge Transfer e-Bulletin. Universidad Politecnica de Cartagena Vol: 2, No: 6.
  • Garcia M, Raes D, Jacobsen SE, 2003. Evapotranspiration Analysis and Irrigation Requirements of Quinoa (Chenopodium quinoa) in the Bolivian Highlands. Agricultural Water Management 60: 119-134.
  • Garcia M, Raes D, Jacobsen SE, Michel T, 2007. Agroclimatic Constraints for Rainfed Agriculture in the Bolivian Altiplano. Journal of Arid Environment 71: 109-121.
  • Geerts S, Raes D, Garcia M, Vacher J, Mamani R, Mendoza J, Huanca R, Morales B, Miranda R, Cusicanqui J, Taboada C, 2008. Introducing Deficit Irrigation to Stabilize Yields of Quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy, 28: 427-436.
  • Geerts S, Raes D, Garcia M, Del Castillo C, Buytaert W, 2006. Agro-Climatic Suitability Mapping for Crop Production in the Bolivian Altiplano: A Case Study for Quinoa. Agricultural and Forest Meteorology, 129: 399-412.
  • Geren H, Kavut YT, Topçu GD, Ekren S, İştipliler D, 2014. Akdeniz İklimi Koşullarında Yetiştirilen Kinoa (Chenopodium quinoa Willd.)’da Farklı Ekim Zamanlarının Tane Verimi ve Bazı Verim Unsurlarına Etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 51(3): 297-305.
  • Geren H, Geren H, 2015. A Preliminary Study on the Effect of Different Irrigation Water Levels on the Grain Yield and Related Characteristics of Quinoa (Chenopodium quinoa Willd.), 26th International Scientific-Expert Conference of Agriculture and Food Industry, 27-30 September 2015, 61(66/1): 269-272.
  • Gonzalez JA, Gallardo M, Hilal M, Rosa M, Prado, FE, 2009. Physiological Responses of Quinoa (Chenopodium quinoa Willd.) to Drought and Waterlogging Stresses: Dry Matter Partitioning. Botanical Study, 50: 35-42.
  • İnce Kaya Ç, 2010. Akdeniz Bölgesinde Damla Sistemiyle Tatlı ve Tuzlu Su Kullanılarak Uygulanan Farklı Sulama Stratejilerinin Quinoa Bitkisinin Verimiyle Toprakta Tuz Birikimine Etkileri ve Saltmed Modelinin Test Edilmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Tarımsal Yapılar ve Sulama Anabilim Dalı, Yüksek Lisans Tezi, Adana.
  • Jacobsen SE, 2003. The Worldwide Potential for Quinoa (Chenopodium quinoa Willd.). Food Review International, 19 (1-2): 167-177.
  • Jacobsen SE, Mujica A, Jensen AC, 2003.The Resistance of Quinoa (Chenopodium quinoa Willd.) to Adverse Abiotic Factors. Food Reviews International, 19: 1-2.
  • Jensen CR, Jacobsen SE, Andersen MN, Nunez N, Andersen SD, Rasmussen L, Mogensen VO, 2000. Leaf Gas Exchange and Water Relations of Field Quinoa (Chenopodium quinoa Willd.) During Soil Drying. European Journal of Agronomy, 13: 11-25.
  • Kinyua M, Njoka EM, Gesimba RM, Birech RJ, 2006. Selection of Drought Tolerant Bread Wheat Genotypes Using Root Characteristics at Seedling Stage. International Journal of Agriculture and Rural Development. School of Agriculture and Agricultural Technology, Federal University of Technology.
  • Raney JA, Reynolds DJ, Elzinga DB, Page J, Udall JA, Jellen EN, Bonfacio A, Fairbanks DJ, Maughan PJ, 2014. Transcriptome Analysis of Drought Induced Stress in Chenopodium quinoa. American Journal of Plant Sciences, 5: 338-357.
  • Razzaghi F, Bahadori-Ghasroldasthi MR, Henriksen S, Spaskhah AR, Jacobsen SE, 2020. Physiological Characteristics and Irrigation Water Productivity of Quinoa (Chenopodium quinoa Willd.) in Response to Deficit Irrigation Imposed at Different Growing Stages-A Field Study from Southern Iran. Journal of Agronomy and crop Science, 206(3): 390-404.
  • Simane B, Struik, PC, Nachit MM, Peacock JM, 1993. Ontogenetic Analysis of Yield Components and Yield Stability of Durum Wheat in Water-Limited Environments. Euphytica, 71(3): 211-219.
  • Stikic R, Jovanovic Z, Marjanovic M, Dordevic S, 2015. The Effect of Drought on Water Regime and Growth of Quinoa (Chenopodium quinoa Willd.). Ratarstvo i Povrtarstvo 52(2): 80-84.
  • Szira F, Bálint AF, Börner A, Galiba G, 2008. Evaluation of Drought‐Related Traits and Screening Methods at Different Developmental Stages in Spring Barley. Journal of Agronomy and Crop Science, 194(5): 334-342.
  • Tan M, Temel S, 2019. Her Yönüyle Kinoa. Önemi, Kullanılması ve Yetiştiriciliği. İksad Yayınevi, Ankara, ISBN: 978-605-7875-88-4, 177 s.
  • Yang A, Akhtar SS, Amjad M, Jacobsen S, 2016. Growth and Physiological Responses of Quinoa to Drought and Temperature Stress. Journal of Agronomy and Crop Science, 202 (6): 445-453.
  • Yin C, Wang X, Duan B, Luo J, Li C, 2004. Early Growth, Dry Matter Allocation and Water Use Efficiency of Two Sympatric Populus Species as Affected by Water Stress. Environmental and Experimental Botany, 53: 315-322.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Agronomy
Journal Section Tarla Bitkileri / Field Crops
Authors

Emre Akçay This is me 0000-0002-8868-7825

Mustafa Tan 0000-0001-7939-7087

Project Number TOVAG-214O232
Publication Date December 15, 2021
Submission Date May 15, 2021
Acceptance Date June 25, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Akçay, E., & Tan, M. (2021). Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri. Journal of the Institute of Science and Technology, 11(4), 3203-3212. https://doi.org/10.21597/jist.937385
AMA Akçay E, Tan M. Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri. J. Inst. Sci. and Tech. December 2021;11(4):3203-3212. doi:10.21597/jist.937385
Chicago Akçay, Emre, and Mustafa Tan. “Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium Quinoa Willd.) Çeşitlerinde Kök Ve Sürgün Gelişmesine Etkileri”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 3203-12. https://doi.org/10.21597/jist.937385.
EndNote Akçay E, Tan M (December 1, 2021) Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri. Journal of the Institute of Science and Technology 11 4 3203–3212.
IEEE E. Akçay and M. Tan, “Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 3203–3212, 2021, doi: 10.21597/jist.937385.
ISNAD Akçay, Emre - Tan, Mustafa. “Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium Quinoa Willd.) Çeşitlerinde Kök Ve Sürgün Gelişmesine Etkileri”. Journal of the Institute of Science and Technology 11/4 (December 2021), 3203-3212. https://doi.org/10.21597/jist.937385.
JAMA Akçay E, Tan M. Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri. J. Inst. Sci. and Tech. 2021;11:3203–3212.
MLA Akçay, Emre and Mustafa Tan. “Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium Quinoa Willd.) Çeşitlerinde Kök Ve Sürgün Gelişmesine Etkileri”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 3203-12, doi:10.21597/jist.937385.
Vancouver Akçay E, Tan M. Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri. J. Inst. Sci. and Tech. 2021;11(4):3203-12.