Research Article
BibTex RIS Cite

Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi

Year 2021, Volume: 11 Issue: 4, 2926 - 2936, 15.12.2021
https://doi.org/10.21597/jist.939368

Abstract

Bu araştırmada, dibenzo[a,c]fenazin bazlı akseptör, donör-akseptör tipi potansiyel termal olarak etkinleştirilen gecikmeli floresans (TADF) yayıcıları elde etmek için donörler ve akseptör ile birleştirildi. Tüm moleküllerin yapısal ve elektronik özellikleri teorik olarak Yoğunluk Fonksiyonel Teorisi (DFT) ve Zamana Bağlı Yoğunluk Fonksiyonel Teorisi (TD-DFT) seviyesinde üç farklı hibrit fonksiyonun uygulanmasıyla hesaplandı. Tasarlanan yapıların çoğunun TADF bileşikleri olma potansiyeline sahip oldukları bulundu. Bunun nedeni ilk uyarılmış tekli ve üçlü halleri arasında çok dar enerji boşluğuna sahip olmasıdır. Sonuç olarak, tasarlanan türevler, amaç için en iyi aday olarak hesaplanabilir ve verimli bir Organik Işık (Yayan Diyot) OLED malzemesi olarak hizmet etmek için de çok güçlü bir potansiyele sahip olabilir.

References

  • Atkins P, Overton T, Rourke J, Weller M, Armstrong F, 2006. Shriver and Atkins Inorganic Chemistry. 4th Edition, Oxford University Press, Oxford.
  • Aydemir M, Haykır G, Battal A, Jankus V, Sugunan SK, Dias FB, Attar H, Türksoy F, Tavaslı M, Monkman AP, 2016. High Efficiency OLEDs Based on Anthracene Derivatives: The impact of Electron Donating and Withdrawing group on the Performance of OLED. Organic Electronics, 30: 149-157.
  • Aydoğan Ş, İncekara Ü, Deniz AR, Türüt A, 2010. Extraction of electronic parameters of Schottky Diode Based on An Organic Orcein. Microelectronic Engineering, 87(12): 2525-2530.
  • Becke AD, 1998. Density-functional Exchange Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38: 3098–3100.
  • Boxi S, Jana D, Parui PP, Ghorai BK, 2018. Dibenzo[a,c]phenazine Based Donor‐Acceptor (D–A) Tetra Branched Molecules: Fine tuning of Optical Properties. Chemistry Select, 3(24): 6953-6959.
  • Casida ME, Jamorski C, Casida KC, Salahub DR, 1998. Molecular Excitation Energies to High-Lying Bound States from Time-dependent Density-functional Response Theory: Characterization and Correction of The Time-dependent local Density Approximation Ionization Threshold. The Journal of Chemical Physics, 108(11): 4439-4449.
  • Chai JD, Head-Gordon M, 2008. Long-range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10(44): 6615-6620.
  • Çiçek B, Çalışır Ü, Tavaslı M, Tülek R, Teke A, 2018. Synthesis and Optical Characterization of Novel Carbazole Schiff Bases. Journal of Molecular Structure, 1153: 42-47.
  • De Sa GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, da Silva Jr EF, 2000. Spectroscopic Properties and Design of Highly Luminescent Lanthanide Coordination Complexes. Coordination Chemistry Reviews, 196(1): 165-195.
  • Demirak K, Can M, Özsoy C, Yiğit MZ, Gültekin B, Demiç Ş, Zafer C, 2017. Synthesis and photovoltaic characterization of triarylamine-substituted quinoxaline push-pull dyes to improve the performance of dye-sensitized solar cells. Turkish Journal of Chemistry, 41(3): 309-322.
  • Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C, 2009. Thermally Activated Delayed Fluorescence from Sn4+–porphyrin Complexes and Their Application to Organic Light Emitting Diodes-A Novel Mechanism for Electroluminescence. Advanced Materials, 21(47): 4802-4806.
  • Fourassier C, 1984. Luminescence Encyclopedia of Inorganic Chemistry. Academic Press, New York.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al., 2009. Gaussian Inc., Wallingford, CT.
  • Gupta RK, Singh RA, 2005. Fabrication and Characteristics of Schottky Diode Based on Composite Organic Semiconductors. Composites Science and Technology, 65(3-4): 677-681.
  • Güllü Ö, Asubay S, Aydoğan Ş, Türüt A, 2010. Electrical Characterization of The Al/new fuchsin/n-Si Organic-modified Device. Physica E: Low-dimensional Systems and Nanostructures, 42(5): 1411-1416.
  • Gümüş A, Gümüş S, 2017. Potential Thermally Activated Delayed Fluorescence Properties of A Series of 2,3-dicyanopyrazine Based Compounds. 5th Virtual Conference on Computational Science (VCCS), Electro Network.
  • Gümüş S, Gümüş A, 2017. A Computational Study on A Series of Phenanthrene and Phenanthroline Based Potential Organic Photovoltaics. Macedonian Journal of Chemistry and Chemical Engineering, 36(2): 239-249.
  • Kalyani NT, Swart HC, Dhoble SJ, 2017. Principles and Applications of Organic Light Emitting Diodes (OLEDs). Woodhead Publishing. Duxford, United Kingdom.
  • Kim DH, Han YW, Moon DK, 2019. A Comparative Investigation of Dibenzo[a,c]phenazine and Quinoxaline Donor–Acceptor Conjugated Polymers:Correlation of Planar Structure and Intramolecular Charge Transfer Properties. Polymer, 185: 121906.
  • Kohn W, Sham LJ, 1965. Self-consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A): A1133.
  • Lee C, Yang W, Parr RG, 1988. Development of The Colle-Salvetti Correlation-energy Formula Into a Functional of The Electron Density. Physical Review B, 37(2): 785.
  • Li J, Zhang Q, Nomura H, Miyazaki H, Adachi C, 2014. Thermally Activated Delayed Fluorescence from 3n π* to 1n π* up Conversion and Its Application to Organic Light-emitting Diodes. Applied Physics Letters, 105(1): 13301-13304.
  • Li P, Cui Y, Song C, Zhang H, 2017. A Systematic Study of Phenoxazine Based Organic Sensitizers for Solar Cells. Dyes and Pigments, 137: 12-23.
  • Mc Keever SW, 1985. Thermoluminescence in Solids. Cambridge University Press, Cambridge.
  • Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C, 2012. Enhanced Electroluminescence Efficiency in A Spiroacridine Derivative Through Thermally Activated Delayed Fluorescence. Angewandte Chemie International Edition, 51(45): 11311-11315.
  • Nakagawa T, Ku SY, Wong KT, Adachi C, 2012. Electroluminescence Based on Thermally Activated Delayed Fluorescence Generated by A Spirobifluorene Donor–Acceptor Structure. Chemical Communications, 48(77): 9580-9582.
  • Nasu K, Nakagawa T, Nomura H, Lin CJ, Cheng CH, Tseng MR, Yasuda T, Adachi C, 2013. A Highly Luminescent Spiroanthracenone Based Organic Light-emitting Diode Exhibiting Thermally Activated Delayed Fluorescence. Chemical Communications, 49(88): 10385-10387.
  • Okur S, Yakuphanoglu F, Ozsoz M, Kadayifcilar PK, 2009. Electrical and Interface properties of Au/DNA/n-Si Organic on Inorganic Structures. Microelectronic Engineering, 86(11): 2305-2311.
  • Schlyer BD, Schauerte JA, Steel DG, Gafni A, 1994. Time-resolved Room Temperature Protein Phosphorescence: Nonexponential Decay from Single Emitting Tryptophans. Biophysical Journal, 67(3): 1192-1202.
  • Shan T, Gao Z, Tang X, He X, Gao Y, Li J, Ma Y, 2017. Highly Efficient and Stable Pure Blue Non-doped Organic Light-emitting Diodes at High Luminance Based on Phenanthroimidazole-pyrene Derivative Enabled by Triplei-triplet Annihilation. Dyes and Pigments, 142: 189-197.
  • Shi J, Chen J, Chai Z, Wang H, Tang R, Fan K, Li Z, 2012. High Performance Organic Sensitizers Based on 11,12-bis (hexyloxy) dibenzo[a,c]phenazine for Dye-sensitized solar cells. Journal of Materials Chemistry, 22(36): 18830-18838.
  • Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pierivone VA, Gruber DF, 2014. The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon. PLoS One, 9(1): e83259.
  • Turhan Irak Z, Gümüs A, Gümüs S, 2019. Investıgatıon of Tadf Propertıes of Novel Donor-Acceptor Type Pyrazıne Derıvatıves. Journal of the Chilean Chemical Society, 64(1), 4303-4309.
  • Turhan Irak Z, Gümüş S, 2017. Heterotricyclic Compounds via Click Reaction: A computational Study. Noble International Journal Science, 7: 80-89.
  • Turro NJ, 1991. Modern Molecular Photochemistry. University Science Books.
  • Yahia IS, Farag AAM, Yakuphanoglu F, Farooq WA, 2011. Temperature Dependence of Electronic Parameters of Organic Schottky Diode Based on Fluorescein Sodium Salt. Synthetic Metals, 161(9-10): 881-887.
  • Yakuphanoglu F, Okur S, 2010. Analysis of Electronic Parameters and Interface States of Boron Dispersed Triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f Techniques. Microelectronic Engineering, 87(1): 30-34.
  • Yanai T, Tew DP, Handy NC, 2004. A New Hybrid Exchange–correlation Functional Using The Coulomb-attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393(1-3): 51-57.
  • Yáñez-S M, Moya SA, Zuniga C, Cardenas-Jiron G, 2017. Theoretical Assessment of TD-DFT Applied to a Ferrocene Based Complex. Computational and Theoretical Chemistry, 1118: 65-74.
  • Yang J, Ganesan P, Teuscher J, Moehl T, Kim YJ, Yi C, Grätzel M, 2014. Influence of the donor size in D− π–A organic dyes for dye-sensitized solar cells. Journal of the American Chemical Society, 136(15): 5722-5730.
  • Yüksel ÖF, Tuğluoğlu N, Şafak H, Kuş M, 2013. The Modification of Schottky Barrier Height of Au/p-Si Schottky Devices by Perylene-diimide. Journal of Applied Physics, 113(4): 044507.
  • Zhang D, Zhao C, Zhang Y, Song X, Wei P, Cai M, Duan L, 2017. Highly Efficient Full-color Thermally Activated Delayed Fluorescent Organic Light-emitting Diodes: Extremely Low Efficiency Roll-off Utilizing A Host with Small Singlet–Triplet Splitting. ACS Applied Materials & Interfaces, 9(5): 4769-4777.
  • Zhu Y, Gibbons KM, Kulkarni AP, Jenekhe SA, 2007. Polyfluorenes Containing Dibenzo [a, c] phenazine Segments: Synthesis and Efficient Blue Electroluminescence from Intramolecular Charge Transfer States. Macromolecules, 40(4): 804-813.

Investigation of OLED and TADF Properties of Phenazine Based Compounds

Year 2021, Volume: 11 Issue: 4, 2926 - 2936, 15.12.2021
https://doi.org/10.21597/jist.939368

Abstract

In this study, dibenzo[a,c]phenazine based acceptor was combined with donors and acceptor to obtain donor-π-acceptor type potential thermally activated delayed fluorescence (TADF) emitters. All molecules’ structural and electronic properties were computed theoretically at the level of Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) with the application of three different hybrid functionals. Most of the designed structures were found to have the potential to be TADF compounds. This is because it has a very narrow energy gap between the first excited single and triple states. As a result, the designed derivatives can be calculated as the best candidates for the purpose and also have very strong potential to serve as an efficient Organic Light (Emitting Diode) OLED material.

References

  • Atkins P, Overton T, Rourke J, Weller M, Armstrong F, 2006. Shriver and Atkins Inorganic Chemistry. 4th Edition, Oxford University Press, Oxford.
  • Aydemir M, Haykır G, Battal A, Jankus V, Sugunan SK, Dias FB, Attar H, Türksoy F, Tavaslı M, Monkman AP, 2016. High Efficiency OLEDs Based on Anthracene Derivatives: The impact of Electron Donating and Withdrawing group on the Performance of OLED. Organic Electronics, 30: 149-157.
  • Aydoğan Ş, İncekara Ü, Deniz AR, Türüt A, 2010. Extraction of electronic parameters of Schottky Diode Based on An Organic Orcein. Microelectronic Engineering, 87(12): 2525-2530.
  • Becke AD, 1998. Density-functional Exchange Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38: 3098–3100.
  • Boxi S, Jana D, Parui PP, Ghorai BK, 2018. Dibenzo[a,c]phenazine Based Donor‐Acceptor (D–A) Tetra Branched Molecules: Fine tuning of Optical Properties. Chemistry Select, 3(24): 6953-6959.
  • Casida ME, Jamorski C, Casida KC, Salahub DR, 1998. Molecular Excitation Energies to High-Lying Bound States from Time-dependent Density-functional Response Theory: Characterization and Correction of The Time-dependent local Density Approximation Ionization Threshold. The Journal of Chemical Physics, 108(11): 4439-4449.
  • Chai JD, Head-Gordon M, 2008. Long-range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Physical Chemistry Chemical Physics, 10(44): 6615-6620.
  • Çiçek B, Çalışır Ü, Tavaslı M, Tülek R, Teke A, 2018. Synthesis and Optical Characterization of Novel Carbazole Schiff Bases. Journal of Molecular Structure, 1153: 42-47.
  • De Sa GF, Malta OL, de Mello Donegá C, Simas AM, Longo RL, Santa-Cruz PA, da Silva Jr EF, 2000. Spectroscopic Properties and Design of Highly Luminescent Lanthanide Coordination Complexes. Coordination Chemistry Reviews, 196(1): 165-195.
  • Demirak K, Can M, Özsoy C, Yiğit MZ, Gültekin B, Demiç Ş, Zafer C, 2017. Synthesis and photovoltaic characterization of triarylamine-substituted quinoxaline push-pull dyes to improve the performance of dye-sensitized solar cells. Turkish Journal of Chemistry, 41(3): 309-322.
  • Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C, 2009. Thermally Activated Delayed Fluorescence from Sn4+–porphyrin Complexes and Their Application to Organic Light Emitting Diodes-A Novel Mechanism for Electroluminescence. Advanced Materials, 21(47): 4802-4806.
  • Fourassier C, 1984. Luminescence Encyclopedia of Inorganic Chemistry. Academic Press, New York.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al., 2009. Gaussian Inc., Wallingford, CT.
  • Gupta RK, Singh RA, 2005. Fabrication and Characteristics of Schottky Diode Based on Composite Organic Semiconductors. Composites Science and Technology, 65(3-4): 677-681.
  • Güllü Ö, Asubay S, Aydoğan Ş, Türüt A, 2010. Electrical Characterization of The Al/new fuchsin/n-Si Organic-modified Device. Physica E: Low-dimensional Systems and Nanostructures, 42(5): 1411-1416.
  • Gümüş A, Gümüş S, 2017. Potential Thermally Activated Delayed Fluorescence Properties of A Series of 2,3-dicyanopyrazine Based Compounds. 5th Virtual Conference on Computational Science (VCCS), Electro Network.
  • Gümüş S, Gümüş A, 2017. A Computational Study on A Series of Phenanthrene and Phenanthroline Based Potential Organic Photovoltaics. Macedonian Journal of Chemistry and Chemical Engineering, 36(2): 239-249.
  • Kalyani NT, Swart HC, Dhoble SJ, 2017. Principles and Applications of Organic Light Emitting Diodes (OLEDs). Woodhead Publishing. Duxford, United Kingdom.
  • Kim DH, Han YW, Moon DK, 2019. A Comparative Investigation of Dibenzo[a,c]phenazine and Quinoxaline Donor–Acceptor Conjugated Polymers:Correlation of Planar Structure and Intramolecular Charge Transfer Properties. Polymer, 185: 121906.
  • Kohn W, Sham LJ, 1965. Self-consistent Equations Including Exchange and Correlation Effects. Physical Review, 140(4A): A1133.
  • Lee C, Yang W, Parr RG, 1988. Development of The Colle-Salvetti Correlation-energy Formula Into a Functional of The Electron Density. Physical Review B, 37(2): 785.
  • Li J, Zhang Q, Nomura H, Miyazaki H, Adachi C, 2014. Thermally Activated Delayed Fluorescence from 3n π* to 1n π* up Conversion and Its Application to Organic Light-emitting Diodes. Applied Physics Letters, 105(1): 13301-13304.
  • Li P, Cui Y, Song C, Zhang H, 2017. A Systematic Study of Phenoxazine Based Organic Sensitizers for Solar Cells. Dyes and Pigments, 137: 12-23.
  • Mc Keever SW, 1985. Thermoluminescence in Solids. Cambridge University Press, Cambridge.
  • Méhes G, Nomura H, Zhang Q, Nakagawa T, Adachi C, 2012. Enhanced Electroluminescence Efficiency in A Spiroacridine Derivative Through Thermally Activated Delayed Fluorescence. Angewandte Chemie International Edition, 51(45): 11311-11315.
  • Nakagawa T, Ku SY, Wong KT, Adachi C, 2012. Electroluminescence Based on Thermally Activated Delayed Fluorescence Generated by A Spirobifluorene Donor–Acceptor Structure. Chemical Communications, 48(77): 9580-9582.
  • Nasu K, Nakagawa T, Nomura H, Lin CJ, Cheng CH, Tseng MR, Yasuda T, Adachi C, 2013. A Highly Luminescent Spiroanthracenone Based Organic Light-emitting Diode Exhibiting Thermally Activated Delayed Fluorescence. Chemical Communications, 49(88): 10385-10387.
  • Okur S, Yakuphanoglu F, Ozsoz M, Kadayifcilar PK, 2009. Electrical and Interface properties of Au/DNA/n-Si Organic on Inorganic Structures. Microelectronic Engineering, 86(11): 2305-2311.
  • Schlyer BD, Schauerte JA, Steel DG, Gafni A, 1994. Time-resolved Room Temperature Protein Phosphorescence: Nonexponential Decay from Single Emitting Tryptophans. Biophysical Journal, 67(3): 1192-1202.
  • Shan T, Gao Z, Tang X, He X, Gao Y, Li J, Ma Y, 2017. Highly Efficient and Stable Pure Blue Non-doped Organic Light-emitting Diodes at High Luminance Based on Phenanthroimidazole-pyrene Derivative Enabled by Triplei-triplet Annihilation. Dyes and Pigments, 142: 189-197.
  • Shi J, Chen J, Chai Z, Wang H, Tang R, Fan K, Li Z, 2012. High Performance Organic Sensitizers Based on 11,12-bis (hexyloxy) dibenzo[a,c]phenazine for Dye-sensitized solar cells. Journal of Materials Chemistry, 22(36): 18830-18838.
  • Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pierivone VA, Gruber DF, 2014. The Covert World of Fish Biofluorescence: A Phylogenetically Widespread and Phenotypically Variable Phenomenon. PLoS One, 9(1): e83259.
  • Turhan Irak Z, Gümüs A, Gümüs S, 2019. Investıgatıon of Tadf Propertıes of Novel Donor-Acceptor Type Pyrazıne Derıvatıves. Journal of the Chilean Chemical Society, 64(1), 4303-4309.
  • Turhan Irak Z, Gümüş S, 2017. Heterotricyclic Compounds via Click Reaction: A computational Study. Noble International Journal Science, 7: 80-89.
  • Turro NJ, 1991. Modern Molecular Photochemistry. University Science Books.
  • Yahia IS, Farag AAM, Yakuphanoglu F, Farooq WA, 2011. Temperature Dependence of Electronic Parameters of Organic Schottky Diode Based on Fluorescein Sodium Salt. Synthetic Metals, 161(9-10): 881-887.
  • Yakuphanoglu F, Okur S, 2010. Analysis of Electronic Parameters and Interface States of Boron Dispersed Triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f Techniques. Microelectronic Engineering, 87(1): 30-34.
  • Yanai T, Tew DP, Handy NC, 2004. A New Hybrid Exchange–correlation Functional Using The Coulomb-attenuating Method (CAM-B3LYP). Chemical Physics Letters, 393(1-3): 51-57.
  • Yáñez-S M, Moya SA, Zuniga C, Cardenas-Jiron G, 2017. Theoretical Assessment of TD-DFT Applied to a Ferrocene Based Complex. Computational and Theoretical Chemistry, 1118: 65-74.
  • Yang J, Ganesan P, Teuscher J, Moehl T, Kim YJ, Yi C, Grätzel M, 2014. Influence of the donor size in D− π–A organic dyes for dye-sensitized solar cells. Journal of the American Chemical Society, 136(15): 5722-5730.
  • Yüksel ÖF, Tuğluoğlu N, Şafak H, Kuş M, 2013. The Modification of Schottky Barrier Height of Au/p-Si Schottky Devices by Perylene-diimide. Journal of Applied Physics, 113(4): 044507.
  • Zhang D, Zhao C, Zhang Y, Song X, Wei P, Cai M, Duan L, 2017. Highly Efficient Full-color Thermally Activated Delayed Fluorescent Organic Light-emitting Diodes: Extremely Low Efficiency Roll-off Utilizing A Host with Small Singlet–Triplet Splitting. ACS Applied Materials & Interfaces, 9(5): 4769-4777.
  • Zhu Y, Gibbons KM, Kulkarni AP, Jenekhe SA, 2007. Polyfluorenes Containing Dibenzo [a, c] phenazine Segments: Synthesis and Efficient Blue Electroluminescence from Intramolecular Charge Transfer States. Macromolecules, 40(4): 804-813.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Zeynep Şilan Turhan 0000-0002-3587-2576

Publication Date December 15, 2021
Submission Date May 19, 2021
Acceptance Date July 12, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Turhan, Z. Ş. (2021). Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(4), 2926-2936. https://doi.org/10.21597/jist.939368
AMA Turhan ZŞ. Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. December 2021;11(4):2926-2936. doi:10.21597/jist.939368
Chicago Turhan, Zeynep Şilan. “Fenazin Tabanlı Bileşiklerin OLED Ve TADF Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2926-36. https://doi.org/10.21597/jist.939368.
EndNote Turhan ZŞ (December 1, 2021) Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 11 4 2926–2936.
IEEE Z. Ş. Turhan, “Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2926–2936, 2021, doi: 10.21597/jist.939368.
ISNAD Turhan, Zeynep Şilan. “Fenazin Tabanlı Bileşiklerin OLED Ve TADF Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2926-2936. https://doi.org/10.21597/jist.939368.
JAMA Turhan ZŞ. Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11:2926–2936.
MLA Turhan, Zeynep Şilan. “Fenazin Tabanlı Bileşiklerin OLED Ve TADF Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2926-3, doi:10.21597/jist.939368.
Vancouver Turhan ZŞ. Fenazin Tabanlı Bileşiklerin OLED ve TADF Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11(4):2926-3.