Research Article
BibTex RIS Cite
Year 2022, Volume: 12 Issue: 1, 317 - 323, 01.03.2022
https://doi.org/10.21597/jist.978327

Abstract

References

  • Aruri H., Singh U., Kumar S., Kushwaha M., Gupta A. P., Vishwakarma R. A., Singh P. P., 2016. I2/Aqueous TBHP-catalyzed coupling of amides with methylarenes/ aldehydes/alcohols: Metal-Free synthesis of imides. Org. Lett., 18: 3638-3641.
  • Atanassova I.A., Petrov J.S., Ognjanova V.H., Mollov N.M., 1990. α,α,α-Trichloroketrylcarbonyl compounds as acylating reagents of amides. Synth. Commun., 20: 2083-2090.
  • Bates R.B., Fletcher F.A., Janda K.D., Miller W.A. 1984. A convenient synthesis of unsymmetrical acyclic imides. J. Org. Chem., 49: 3038.
  • Challis B.C., Challis J., Zabicky J. (Ed.). 1970. The chemistry of amides. pp 759, J. Wiley and Sons, New York,
  • Davidson, D., Skovronek H. 1958. The acylation of amides. J. Am. Chem. Soc., 80 (2): 376-379.
  • Ding G., Jiang L., Guo L., Chen X., Zhang H., Che Y. 2008. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus pestalotiopsis theae. J. Nat. Prod., 71: 1861-1865.
  • Durrell W.S., Young J.A., Dresdner R.D. 1963. Fluorocarbon nitrogen compounds. IX. The reaction of nitriles with carboxylic acids. J. Org. Chem., 28: 831-833.
  • Flitsch W., Hohenhorst M. 1990. N‐Protected 3‐hydroxypyrroles. Liebigs Ann. Chem., 397-399.
  • Flitsch W, Pandl K, Ruskamp P, 1983. Zur Umsetzung offenkettiger Imide mit 1‐ethoxycarbonylcyclopropyltriphenylphosphonium‐tetraf luoroborat: Ein einfacher weg zu 1H‐Pyrrol‐3‐carbonsäureestern. Liebigs Ann. Chem., 529-534.
  • Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J, 1986. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 27: 279-282.
  • Giguère R, Bray T, Duncan S, Majetich G, 1986. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 27: 4945-4948.
  • Habibi Z, Salehi P, Zolfigol MA, Yousefi M, 2007. A Novel one-pot synthesis of unsymmetrical acyclic imides, Synlett, 5: 812-814.
  • Hurd CD, Prapas AG, 1959. Preparation of acyclic imides. J. Org. Chem., 24: 388-392.
  • Jin Z, Xu B, Hammond GB, 2011. Copper mediated oxidation of amides to imides by Selectfluor. Tet. Lett., 52: 1956–1959.
  • Kantlehner W, Fischer P, Kugel W, Möhring E, Bredereck H, 1978. N,N‐Bis(trimethylsilyl)formamid und N,O‐Bis(trimethylsilyl)imidsäureester; Struktur und chemische reaktivität. Justus Liebigs Ann. Chem., 3: 512-527.
  • Koehn, FE, Longley RE, Reed JK, 1992. A Novel One-Pot Synthesis of unsymmetrical acyclic imides. J. Nat. Prod, 55: 613-619.
  • Lee J, Hong M, Jung Y, Cho EJ, Rhee H, 2012. Synthesis of 1,3,5-trisubstituted-1,2,4-triazoles by microwave-assisted N-acylation of amide derivatives and the consecutive reaction with hydrazine hydrochlorides. Tetrahedron, 68: 2045-2051.
  • Liu G, Li Y, Sheng J, Wang XS, 2017. Oxidative cleavage of enamides with hypervalent iodine(III)/TMSN3 under an air atmosphere. Synthesis, , 49: 3968-3974.
  • Maruyama HB, Suhara Y, Suzuki-Watanabe J, Maeshima Y, Shimizu NJ, 1975. A new antibiotic, fumaramidmycin. I. Production, biological properties and characterization of producer strain. J. Antibiot., 28: 636-647.
  • Mei C, Hu Y, Lu W, 2018. Visible-Light-Driven oxidation of N-alkylamides to imides using oxone/H2O and catalytic KBr. Synthesis, 50: 2999-3005.
  • Merrit B, Andrus WL, Keyes RF, 1998. Synthesis of mixed acyclic imides using pentafluorophenyl esters, Tetrahedron Letters, 39: 5465-5468.
  • Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Nasr-Esfahani M, 2011. Efficient synthesis of symmetrical and unsymmetrical acyclic imides catalyzed by reusable 12-Tungstophosphoric acid under thermal conditions and microwave irradiation. J. Iran. Chem. Soc. 8 (2): 401-410.
  • Nagle DG, Paul VJ, Roberts MA, 1996. Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett., 37: 6263-6266.
  • Nakamura H, Iitaka Y, Sakakibara H, Umezawa H, 1974. The molecular and crystal structure determination of bisanhydroalthiomycin by the x-ray diffraction method. J. Antibiot., 27: 894-896.
  • Nasr-esfahani M, Montazerozohori M, Filvan N, 2012. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent-free conditions. J. Serb. Chem. Soc. 77 (4) : 415–421.
  • Nicolaou KC, Mathison CJN, 2005. Synthesis of imides, N-acyl vinylogous carbamates and ureas, and nitriles by oxidation of amides and amines with Dess–Martin periodinane. Angew. Chem. Int. Ed., 44: 5992-5997.
  • Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM, 1989. Isolation and structure of the cytostatic linear depsipeptide dolastatin-15. J. Org. Chem., 54: 6005-6006.
  • Schnyder A, lndolese AF, 2002. Synthesis of unsymmetrical aroyl acyl imides by aminocarbonylation of aryl bromides J. Org. Chem., 67: 594-597.
  • Seiller B, Heins D, Bruneau C, Dixneuf PH, 1995. Efficient preparations of acylamides, acylcarbamates and acylureas from alk-1-en-2-yl esters. Tetrahedron, 51: 10901-10912.
  • Tanaka Kl, Yoshifuji S, Nitta Y, 1987. Ruthenium tetroxide oxidation of N-acylated alkylamines: A new general synthesis of imides. Chem. Phami. Bull., 35: 364-369.
  • Voorstad PJ, Chapman JM, Cocolas GH, Wyrick SD, Hall IH, 1985. Comparison of the hypolipidemic activity of cyclic vs. acyclic imides. J. Med. Chem., 28: 9-12.
  • Wheeler OII, Rosado O, Zabicky J (Ed.), 1970. The chemistry of amides. pp 335, J. Wiley and Sons, New York.,
  • Yamamoto Y, Onishi S, Azuma Y, 1981. A new method for preparation of N-acetoacetyl-carboxamides. Synthesis, 122.
  • Yu H, Chen Y, Zhang Y, 2015. TBHP/TEMPO-mediated oxidative synthesis of imides from amides. Chin. J. Chem., 33: 531-534.

Microwave-Assisted Synthesis of Acyclic Imides

Year 2022, Volume: 12 Issue: 1, 317 - 323, 01.03.2022
https://doi.org/10.21597/jist.978327

Abstract

Imides are an important class of compounds found in the structure of many biologically active and natural compounds. Imides are also important starting materials used in the synthesis of many heterocyclic compounds. Therefore, the synthesis of these compounds has attracted considerable attention and several innovative methods have been developed. Herein, the synthesis of acyclic imides has been reported from nitriles and carboxylic anhydrides in the presence of catalytic amounts of p-toluenesulfonic acid (PTSA) or H2SO4 under microwave irradiation. The reaction has proceeded in better yields with PTSA. When sulfuric acid was used, the product was obtained in lower yields since the degradation was increased. This new microwave-assisted method is compared with conventional heating, and the other methods, reported in the literature. The main advantages of this procedure are shorter reaction times, easier work-up, and good yields.

References

  • Aruri H., Singh U., Kumar S., Kushwaha M., Gupta A. P., Vishwakarma R. A., Singh P. P., 2016. I2/Aqueous TBHP-catalyzed coupling of amides with methylarenes/ aldehydes/alcohols: Metal-Free synthesis of imides. Org. Lett., 18: 3638-3641.
  • Atanassova I.A., Petrov J.S., Ognjanova V.H., Mollov N.M., 1990. α,α,α-Trichloroketrylcarbonyl compounds as acylating reagents of amides. Synth. Commun., 20: 2083-2090.
  • Bates R.B., Fletcher F.A., Janda K.D., Miller W.A. 1984. A convenient synthesis of unsymmetrical acyclic imides. J. Org. Chem., 49: 3038.
  • Challis B.C., Challis J., Zabicky J. (Ed.). 1970. The chemistry of amides. pp 759, J. Wiley and Sons, New York,
  • Davidson, D., Skovronek H. 1958. The acylation of amides. J. Am. Chem. Soc., 80 (2): 376-379.
  • Ding G., Jiang L., Guo L., Chen X., Zhang H., Che Y. 2008. Pestalazines and pestalamides, bioactive metabolites from the plant pathogenic fungus pestalotiopsis theae. J. Nat. Prod., 71: 1861-1865.
  • Durrell W.S., Young J.A., Dresdner R.D. 1963. Fluorocarbon nitrogen compounds. IX. The reaction of nitriles with carboxylic acids. J. Org. Chem., 28: 831-833.
  • Flitsch W., Hohenhorst M. 1990. N‐Protected 3‐hydroxypyrroles. Liebigs Ann. Chem., 397-399.
  • Flitsch W, Pandl K, Ruskamp P, 1983. Zur Umsetzung offenkettiger Imide mit 1‐ethoxycarbonylcyclopropyltriphenylphosphonium‐tetraf luoroborat: Ein einfacher weg zu 1H‐Pyrrol‐3‐carbonsäureestern. Liebigs Ann. Chem., 529-534.
  • Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J, 1986. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 27: 279-282.
  • Giguère R, Bray T, Duncan S, Majetich G, 1986. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 27: 4945-4948.
  • Habibi Z, Salehi P, Zolfigol MA, Yousefi M, 2007. A Novel one-pot synthesis of unsymmetrical acyclic imides, Synlett, 5: 812-814.
  • Hurd CD, Prapas AG, 1959. Preparation of acyclic imides. J. Org. Chem., 24: 388-392.
  • Jin Z, Xu B, Hammond GB, 2011. Copper mediated oxidation of amides to imides by Selectfluor. Tet. Lett., 52: 1956–1959.
  • Kantlehner W, Fischer P, Kugel W, Möhring E, Bredereck H, 1978. N,N‐Bis(trimethylsilyl)formamid und N,O‐Bis(trimethylsilyl)imidsäureester; Struktur und chemische reaktivität. Justus Liebigs Ann. Chem., 3: 512-527.
  • Koehn, FE, Longley RE, Reed JK, 1992. A Novel One-Pot Synthesis of unsymmetrical acyclic imides. J. Nat. Prod, 55: 613-619.
  • Lee J, Hong M, Jung Y, Cho EJ, Rhee H, 2012. Synthesis of 1,3,5-trisubstituted-1,2,4-triazoles by microwave-assisted N-acylation of amide derivatives and the consecutive reaction with hydrazine hydrochlorides. Tetrahedron, 68: 2045-2051.
  • Liu G, Li Y, Sheng J, Wang XS, 2017. Oxidative cleavage of enamides with hypervalent iodine(III)/TMSN3 under an air atmosphere. Synthesis, , 49: 3968-3974.
  • Maruyama HB, Suhara Y, Suzuki-Watanabe J, Maeshima Y, Shimizu NJ, 1975. A new antibiotic, fumaramidmycin. I. Production, biological properties and characterization of producer strain. J. Antibiot., 28: 636-647.
  • Mei C, Hu Y, Lu W, 2018. Visible-Light-Driven oxidation of N-alkylamides to imides using oxone/H2O and catalytic KBr. Synthesis, 50: 2999-3005.
  • Merrit B, Andrus WL, Keyes RF, 1998. Synthesis of mixed acyclic imides using pentafluorophenyl esters, Tetrahedron Letters, 39: 5465-5468.
  • Mohammadpoor-Baltork I, Tangestaninejad S, Moghadam M, Mirkhani V, Nasr-Esfahani M, 2011. Efficient synthesis of symmetrical and unsymmetrical acyclic imides catalyzed by reusable 12-Tungstophosphoric acid under thermal conditions and microwave irradiation. J. Iran. Chem. Soc. 8 (2): 401-410.
  • Nagle DG, Paul VJ, Roberts MA, 1996. Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Lett., 37: 6263-6266.
  • Nakamura H, Iitaka Y, Sakakibara H, Umezawa H, 1974. The molecular and crystal structure determination of bisanhydroalthiomycin by the x-ray diffraction method. J. Antibiot., 27: 894-896.
  • Nasr-esfahani M, Montazerozohori M, Filvan N, 2012. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent-free conditions. J. Serb. Chem. Soc. 77 (4) : 415–421.
  • Nicolaou KC, Mathison CJN, 2005. Synthesis of imides, N-acyl vinylogous carbamates and ureas, and nitriles by oxidation of amides and amines with Dess–Martin periodinane. Angew. Chem. Int. Ed., 44: 5992-5997.
  • Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM, 1989. Isolation and structure of the cytostatic linear depsipeptide dolastatin-15. J. Org. Chem., 54: 6005-6006.
  • Schnyder A, lndolese AF, 2002. Synthesis of unsymmetrical aroyl acyl imides by aminocarbonylation of aryl bromides J. Org. Chem., 67: 594-597.
  • Seiller B, Heins D, Bruneau C, Dixneuf PH, 1995. Efficient preparations of acylamides, acylcarbamates and acylureas from alk-1-en-2-yl esters. Tetrahedron, 51: 10901-10912.
  • Tanaka Kl, Yoshifuji S, Nitta Y, 1987. Ruthenium tetroxide oxidation of N-acylated alkylamines: A new general synthesis of imides. Chem. Phami. Bull., 35: 364-369.
  • Voorstad PJ, Chapman JM, Cocolas GH, Wyrick SD, Hall IH, 1985. Comparison of the hypolipidemic activity of cyclic vs. acyclic imides. J. Med. Chem., 28: 9-12.
  • Wheeler OII, Rosado O, Zabicky J (Ed.), 1970. The chemistry of amides. pp 335, J. Wiley and Sons, New York.,
  • Yamamoto Y, Onishi S, Azuma Y, 1981. A new method for preparation of N-acetoacetyl-carboxamides. Synthesis, 122.
  • Yu H, Chen Y, Zhang Y, 2015. TBHP/TEMPO-mediated oxidative synthesis of imides from amides. Chin. J. Chem., 33: 531-534.
There are 34 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Nevin Arıkan Ölmez 0000-0002-0824-1162

Publication Date March 1, 2022
Submission Date August 3, 2021
Acceptance Date October 11, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Arıkan Ölmez, N. (2022). Microwave-Assisted Synthesis of Acyclic Imides. Journal of the Institute of Science and Technology, 12(1), 317-323. https://doi.org/10.21597/jist.978327
AMA Arıkan Ölmez N. Microwave-Assisted Synthesis of Acyclic Imides. J. Inst. Sci. and Tech. March 2022;12(1):317-323. doi:10.21597/jist.978327
Chicago Arıkan Ölmez, Nevin. “Microwave-Assisted Synthesis of Acyclic Imides”. Journal of the Institute of Science and Technology 12, no. 1 (March 2022): 317-23. https://doi.org/10.21597/jist.978327.
EndNote Arıkan Ölmez N (March 1, 2022) Microwave-Assisted Synthesis of Acyclic Imides. Journal of the Institute of Science and Technology 12 1 317–323.
IEEE N. Arıkan Ölmez, “Microwave-Assisted Synthesis of Acyclic Imides”, J. Inst. Sci. and Tech., vol. 12, no. 1, pp. 317–323, 2022, doi: 10.21597/jist.978327.
ISNAD Arıkan Ölmez, Nevin. “Microwave-Assisted Synthesis of Acyclic Imides”. Journal of the Institute of Science and Technology 12/1 (March 2022), 317-323. https://doi.org/10.21597/jist.978327.
JAMA Arıkan Ölmez N. Microwave-Assisted Synthesis of Acyclic Imides. J. Inst. Sci. and Tech. 2022;12:317–323.
MLA Arıkan Ölmez, Nevin. “Microwave-Assisted Synthesis of Acyclic Imides”. Journal of the Institute of Science and Technology, vol. 12, no. 1, 2022, pp. 317-23, doi:10.21597/jist.978327.
Vancouver Arıkan Ölmez N. Microwave-Assisted Synthesis of Acyclic Imides. J. Inst. Sci. and Tech. 2022;12(1):317-23.