Research Article
BibTex RIS Cite

Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi

Year 2022, Volume: 12 Issue: 2, 870 - 881, 01.06.2022
https://doi.org/10.21597/jist.1039599

Abstract

Pirazolin türevi iki izomer molekül (4.2 ve 2.2) için sodyum dodesil sülfat misel ortamında seçilen dört farklı floresans probla (Safranin T, Akridin O, Pyronin Y, Floresin) gerçekleştirilen floresans enerji transferine bir floresans sönümleyici olduğu bilinen grafen oksitin kuençleştirici etkisi incelenmiştir. Yapılan çalışma durgun hal floresans spektroskopi tekniği ile gerçekleştirilmiştir. Enerji transferi ile ilgili parametreler Förster kinetiğine, kuençleşme ile ilgili parametreler ise Stern-Volmer kinetiğine göre belirlenmiştir. Çalışmanın sonucunda donör-akseptör çiftleri arasındaki floresans enerji transferinin GO tarafından zayıflatıldığı fakat tamamen sonlanmadığı ve düşük oranda devam ettiği anlaşılmıştır.

References

  • Afzal, Saima, Mohd Sajid Lone, Parvaiz Ahmad Bhat, and Aijaz Ahmad Dar. 2018. “Multi-Step Fluorescence Resonance Energy Transfer between the Fluorophores via Cosolubilization in Cationic, Anionic and Non-Ionic Micelles.” Journal of Photochemistry and Photobiology A: Chemistry 365 (June): 220–31. https://doi.org/10.1016/j.jphotochem.2018.08.002.
  • Ariga, Girish G., Praveen N. Naik, Shivamurti A. Chimatadar, and Sharanappa T. Nandibewoor. 2017. “Interactions between Epinastine and Human Serum Albumin: Investigation by Fluorescence, UV–Vis, FT–IR, CD, Lifetime Measurement and Molecular Docking.” Journal of Molecular Structure 1137 (June): 485–94. https://doi.org/10.1016/J.MOLSTRUC.2016.12.066.
  • Aydin, Burcu Meryem, Murat Acar, Mustafa Arik, and Yavuz Onganer. 2009. “The Fluorescence Resonance Energy Transfer between Dye Compounds in Micellar Media.” Dyes and Pigments 81 (2): 156–60. https://doi.org/10.1016/j.dyepig.2008.10.002.
  • Bozkurt, Ebru. 2018. “Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi.” Journal of the Institute of Science and Technology 8 (1): 143–55. https://doi.org/10.21597/jist.407862.
  • Cimilli Çatır, Fulya Esra. 2020. “Grafen Oksitin Modifiye Hummers Yöntemi Ile Sentezi ve Film Olarak Al/GO/n-InP Diyot Performansına Etkileri.” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11: 235–44. https://doi.org/10.17714/gumusfenbil.770061.
  • Ciotta, E., P. Prosposito, and R. Pizzoferrato. 2019. “Positive Curvature in Stern-Volmer Plot Described by a Generalized Model for Static Quenching.” Journal of Luminescence 206 (August 2018): 518–22. https://doi.org/10.1016/j.jlumin.2018.10.106.
  • De, Swati, Susmita Das, and Agnishwar Girigoswami. 2005. “Environmental Effects on the Aggregation of Some Xanthene Dyes Used in Lasers.” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 61 (8): 1821–33. https://doi.org/10.1016/j.saa.2004.06.054.
  • García Sánchez, F., and C. Carnero Ruiz. 1996. “Intramicellar Energy Transfer in Aqueous CTAB Solutions.” Journal of Luminescence 69 (4): 179–86. https://doi.org/10.1016/S0022-2313(96)00116-0.
  • Ghosh, Aniruddha, Kriti Sengupta, Rumpa Saha, and Bidyut Saha. 2014. “Effect of CPC Micelle on N-Hetero-Aromatic Base Promoted Room Temperature Permanganate Oxidation of 2-Butanol in Aqueous Medium.” Journal of Molecular Liquids 198: 369–80. https://doi.org/10.1016/j.molliq.2014.07.018.
  • He, Xiao Peng, and He Tian. 2018. “Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials.” Chem 4 (2): 246–68. https://doi.org/10.1016/j.chempr.2017.11.006.
  • He, Xuewen, Ling Hong Xiong, Yalan Huang, Zheng Zhao, Zaiyu Wang, Jacky Wing Yip Lam, Ryan Tsz Kin Kwok, and Ben Zhong Tang. 2020. “AIE-Based Energy Transfer Systems for Biosensing, Imaging, and Therapeutics.” TrAC Trends in Analytical Chemistry 122 (January): 115743. https://doi.org/10.1016/J.TRAC.2019.115743.
  • Ju Youn, Hee, Ewald Terpetschnig, Henryk Szmacinski, and Joseph R. Lakowicz. 1995. “Fluorescence Energy Transfer Immunoassay Based on a Long-Lifetime Luminescent Metal-Ligand Complex.” Analytical Biochemistry 232 (1): 24–30. https://doi.org/10.1006/abio.1995.9966.
  • Kalyanasundaram, K., and J. K. Thomas. 1977. “Solvent-Dependent Fluorescence of Pyrene-3-Carboxaldehyde and Its Applications in the Estimation of Polarity at Micelle-Water Interfaces.” The Journal of Physical Chemistry 81 (23): 2176–80. https://doi.org/10.1021/j100538a008.
  • Korkmaz, Kubilay, Burcu Meryem Beşer, Ayşe Merve Şenol, and Yavuz Onganer. 2021. “Safranin T- SDS- GO Ternary System: A Fluorescent PH Sensor.” Colloids and Surfaces B: Biointerfaces 206 (July). https://doi.org/10.1016/j.colsurfb.2021.111977.
  • Lakowicz, Joseph R. 2006. Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy. Principles of Fluorescence Spectroscopy, Springer, New York, USA, 3rd Edn, 2006. https://doi.org/10.1007/978-0-387-46312-4.
  • Li, Junfen, Jinzeng Li, Yong Jiao, and Chuan Dong. 2014. “Spectroscopic Analysis and Molecular Modeling on the Interaction of Jatrorrhizine with Human Serum Albumin (HSA).” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 118: 48–54. https://doi.org/10.1016/j.saa.2013.07.029.
  • Mishra, Vikash K., Mitali Mishra, Varsha Kashaw, and Sushil K. Kashaw. 2017. “Synthesis of 1,3,5-Trisubstituted Pyrazolines as Potential Antimalarial and Antimicrobial Agents.” Bioorganic & Medicinal Chemistry 25 (6): 1949–62. https://doi.org/10.1016/J.BMC.2017.02.025.
  • Nan, Zhezhu, Changchun Hao, Xiaoqi Ye, Ying Feng, and Runguang Sun. 2019. “Interaction of Graphene Oxide with Bovine Serum Albumin: A Fluorescence Quenching Study.” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 210: 348–54. https://doi.org/10.1016/j.saa.2018.11.028.
  • Nee Pant, Geeta Joshi, Pramod Singh, B. S. Rawat, M. S.M. Rawat, and G. C. Joshi. 2011. “Synthesis, Characterization and Fluorescence Studies of 3,5-Diaryl Substituted 2-Pyrazolines.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78 (3): 1075–79. https://doi.org/10.1016/J.SAA.2010.12.053.
  • Perdana, Fitra, Yum Eryanti, and Adel Zamri. 2015. “Synthesis and Toxicity Assessments Some Para-Methoxy Chalcones Derivatives.” Procedia Chemistry 16: 129–33. https://doi.org/10.1016/j.proche.2015.12.040.
  • Qi, Haixia, Guangquan Li, Wenyi Xiao, Qiusheng Wang, Tao Zhu, and Guowen Li. 2007. “Fluorescence Resonance Energy Transfer Mediated by Vesicles Containing Naphthalene Moiety.” Dyes and Pigments 74 (2): 454–57. https://doi.org/10.1016/J.DYEPIG.2006.03.005.
  • Ramkumar, V., and P. Kannan. 2015. “Highly Fluorescent Semiconducting Pyrazoline Materials for Optoelectronics.” Optical Materials 46 (May 2021): 605–13. https://doi.org/10.1016/j.optmat.2015.05.045.
  • Sarkar, Arindam, and Subhash Chandra Bhattacharya. 2012. “Selective Fluorescence Resonance Energy Transfer from Serum Albumins to a Bio-Active 3-Pyrazolyl-2-Pyrazoline Derivative: A Spectroscopic Analysis.” Journal of Luminescence 132 (10): 2612–18. https://doi.org/10.1016/j.jlumin.2012.04.053.
  • Šimšíková, M. 2016. “Interaction of Graphene Oxide with Albumins: Effect of Size, PH, and Temperature.” Archives of Biochemistry and Biophysics 593: 69–79. https://doi.org/10.1016/j.abb.2016.02.015.
  • Steiner, R F. 1984. Principles of Fluorescence Spectroscopy - Lakowicz,Jr. Anal Biochem. Vol. 137. https://doi.org/Doi 10.1016/0003-2697(84)90125-8.
  • Valeur, Bernard. 2001. Molecular Fluorescence Principles and Applications. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/3527600248.
  • Valeur, Bernard, and Mário Nuno Berberan-Santos. 2012. “Handbook of Fluorescence Spectroscopy and Imaging Fluorescence Applications in Biotechnology and Life Sciences Surface Enhanced Raman Spectroscopy Applied and Industrial Photochemistry.”
  • Vera-López, S., P. Martínez, M. P. San Andrés, A. M. Díez-Pascual, and M. Valiente. 2018. “Study of Graphene Dispersions in Sodium Dodecylsulfate by Steady-State Fluorescence of Pyrene.” Journal of Colloid and Interface Science 514: 415–24. https://doi.org/10.1016/j.jcis.2017.12.052.
  • Verkman, A. S. 1987. “Mechanism and Kinetics of Merocyanine 540 Binding to Phospholipid Membranes.” Biochemistry 26 (13): 4050–56. https://doi.org/10.1021/bi00387a046.
  • Yazıcı, Mustafa, İsmail Tiyek, Mehmet Sabri Ersoy, Mehmet Hakkı Alma, Utkay Dönmez, Behzat Yıldırım, Tufan Salan, et al. 2016. “Modifiye Hummers Yöntemi̇yle Grafen Oksi̇t (GO) Sentezi̇ Ve Karakteri̇zasyonu.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 4 (2): 41–48. http://dergipark.gov.tr/http-gujsc-gazi-edu-tr/issue/24939/263249.
  • Zaaba, N. I., K. L. Foo, U. Hashim, S. J. Tan, Wei Wen Liu, and C. H. Voon. 2017. “Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence.” Procedia Engineering 184: 469–77. https://doi.org/10.1016/j.proeng.2017.04.118.

Investigation of the Quenching Effect of Graphene Oxide on Fluorescence Energy Transfer

Year 2022, Volume: 12 Issue: 2, 870 - 881, 01.06.2022
https://doi.org/10.21597/jist.1039599

Abstract

The quenching effect of GO on the fluorescence energy transfer between two pyrazoline-derived isomer molecules (4,2 and 2,2) (donor) and four different acceptor molecules (Safranin T, Acridine O, Pyronin Y, Fluorescein) were investigated in sodium dodecyl sulfate micellar media. The study was carried out using the steady state fluorescence spectroscopy technique. Parameters related to energy transfer were determined according to Förster kinetics, and parameters related to quenching were determined according to Stern-Volmer kinetics. As a result of the study, it was understood that the fluorescence energy transfer between donor-acceptor pairs was weakened by GO, but not completely terminated and continued at a low rate.

References

  • Afzal, Saima, Mohd Sajid Lone, Parvaiz Ahmad Bhat, and Aijaz Ahmad Dar. 2018. “Multi-Step Fluorescence Resonance Energy Transfer between the Fluorophores via Cosolubilization in Cationic, Anionic and Non-Ionic Micelles.” Journal of Photochemistry and Photobiology A: Chemistry 365 (June): 220–31. https://doi.org/10.1016/j.jphotochem.2018.08.002.
  • Ariga, Girish G., Praveen N. Naik, Shivamurti A. Chimatadar, and Sharanappa T. Nandibewoor. 2017. “Interactions between Epinastine and Human Serum Albumin: Investigation by Fluorescence, UV–Vis, FT–IR, CD, Lifetime Measurement and Molecular Docking.” Journal of Molecular Structure 1137 (June): 485–94. https://doi.org/10.1016/J.MOLSTRUC.2016.12.066.
  • Aydin, Burcu Meryem, Murat Acar, Mustafa Arik, and Yavuz Onganer. 2009. “The Fluorescence Resonance Energy Transfer between Dye Compounds in Micellar Media.” Dyes and Pigments 81 (2): 156–60. https://doi.org/10.1016/j.dyepig.2008.10.002.
  • Bozkurt, Ebru. 2018. “Organize Surfaktant Yapılar Varlığında Floresin ve Safranin-T Arasındaki Enerji Transferi.” Journal of the Institute of Science and Technology 8 (1): 143–55. https://doi.org/10.21597/jist.407862.
  • Cimilli Çatır, Fulya Esra. 2020. “Grafen Oksitin Modifiye Hummers Yöntemi Ile Sentezi ve Film Olarak Al/GO/n-InP Diyot Performansına Etkileri.” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11: 235–44. https://doi.org/10.17714/gumusfenbil.770061.
  • Ciotta, E., P. Prosposito, and R. Pizzoferrato. 2019. “Positive Curvature in Stern-Volmer Plot Described by a Generalized Model for Static Quenching.” Journal of Luminescence 206 (August 2018): 518–22. https://doi.org/10.1016/j.jlumin.2018.10.106.
  • De, Swati, Susmita Das, and Agnishwar Girigoswami. 2005. “Environmental Effects on the Aggregation of Some Xanthene Dyes Used in Lasers.” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 61 (8): 1821–33. https://doi.org/10.1016/j.saa.2004.06.054.
  • García Sánchez, F., and C. Carnero Ruiz. 1996. “Intramicellar Energy Transfer in Aqueous CTAB Solutions.” Journal of Luminescence 69 (4): 179–86. https://doi.org/10.1016/S0022-2313(96)00116-0.
  • Ghosh, Aniruddha, Kriti Sengupta, Rumpa Saha, and Bidyut Saha. 2014. “Effect of CPC Micelle on N-Hetero-Aromatic Base Promoted Room Temperature Permanganate Oxidation of 2-Butanol in Aqueous Medium.” Journal of Molecular Liquids 198: 369–80. https://doi.org/10.1016/j.molliq.2014.07.018.
  • He, Xiao Peng, and He Tian. 2018. “Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials.” Chem 4 (2): 246–68. https://doi.org/10.1016/j.chempr.2017.11.006.
  • He, Xuewen, Ling Hong Xiong, Yalan Huang, Zheng Zhao, Zaiyu Wang, Jacky Wing Yip Lam, Ryan Tsz Kin Kwok, and Ben Zhong Tang. 2020. “AIE-Based Energy Transfer Systems for Biosensing, Imaging, and Therapeutics.” TrAC Trends in Analytical Chemistry 122 (January): 115743. https://doi.org/10.1016/J.TRAC.2019.115743.
  • Ju Youn, Hee, Ewald Terpetschnig, Henryk Szmacinski, and Joseph R. Lakowicz. 1995. “Fluorescence Energy Transfer Immunoassay Based on a Long-Lifetime Luminescent Metal-Ligand Complex.” Analytical Biochemistry 232 (1): 24–30. https://doi.org/10.1006/abio.1995.9966.
  • Kalyanasundaram, K., and J. K. Thomas. 1977. “Solvent-Dependent Fluorescence of Pyrene-3-Carboxaldehyde and Its Applications in the Estimation of Polarity at Micelle-Water Interfaces.” The Journal of Physical Chemistry 81 (23): 2176–80. https://doi.org/10.1021/j100538a008.
  • Korkmaz, Kubilay, Burcu Meryem Beşer, Ayşe Merve Şenol, and Yavuz Onganer. 2021. “Safranin T- SDS- GO Ternary System: A Fluorescent PH Sensor.” Colloids and Surfaces B: Biointerfaces 206 (July). https://doi.org/10.1016/j.colsurfb.2021.111977.
  • Lakowicz, Joseph R. 2006. Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy. Principles of Fluorescence Spectroscopy, Springer, New York, USA, 3rd Edn, 2006. https://doi.org/10.1007/978-0-387-46312-4.
  • Li, Junfen, Jinzeng Li, Yong Jiao, and Chuan Dong. 2014. “Spectroscopic Analysis and Molecular Modeling on the Interaction of Jatrorrhizine with Human Serum Albumin (HSA).” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 118: 48–54. https://doi.org/10.1016/j.saa.2013.07.029.
  • Mishra, Vikash K., Mitali Mishra, Varsha Kashaw, and Sushil K. Kashaw. 2017. “Synthesis of 1,3,5-Trisubstituted Pyrazolines as Potential Antimalarial and Antimicrobial Agents.” Bioorganic & Medicinal Chemistry 25 (6): 1949–62. https://doi.org/10.1016/J.BMC.2017.02.025.
  • Nan, Zhezhu, Changchun Hao, Xiaoqi Ye, Ying Feng, and Runguang Sun. 2019. “Interaction of Graphene Oxide with Bovine Serum Albumin: A Fluorescence Quenching Study.” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 210: 348–54. https://doi.org/10.1016/j.saa.2018.11.028.
  • Nee Pant, Geeta Joshi, Pramod Singh, B. S. Rawat, M. S.M. Rawat, and G. C. Joshi. 2011. “Synthesis, Characterization and Fluorescence Studies of 3,5-Diaryl Substituted 2-Pyrazolines.” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78 (3): 1075–79. https://doi.org/10.1016/J.SAA.2010.12.053.
  • Perdana, Fitra, Yum Eryanti, and Adel Zamri. 2015. “Synthesis and Toxicity Assessments Some Para-Methoxy Chalcones Derivatives.” Procedia Chemistry 16: 129–33. https://doi.org/10.1016/j.proche.2015.12.040.
  • Qi, Haixia, Guangquan Li, Wenyi Xiao, Qiusheng Wang, Tao Zhu, and Guowen Li. 2007. “Fluorescence Resonance Energy Transfer Mediated by Vesicles Containing Naphthalene Moiety.” Dyes and Pigments 74 (2): 454–57. https://doi.org/10.1016/J.DYEPIG.2006.03.005.
  • Ramkumar, V., and P. Kannan. 2015. “Highly Fluorescent Semiconducting Pyrazoline Materials for Optoelectronics.” Optical Materials 46 (May 2021): 605–13. https://doi.org/10.1016/j.optmat.2015.05.045.
  • Sarkar, Arindam, and Subhash Chandra Bhattacharya. 2012. “Selective Fluorescence Resonance Energy Transfer from Serum Albumins to a Bio-Active 3-Pyrazolyl-2-Pyrazoline Derivative: A Spectroscopic Analysis.” Journal of Luminescence 132 (10): 2612–18. https://doi.org/10.1016/j.jlumin.2012.04.053.
  • Šimšíková, M. 2016. “Interaction of Graphene Oxide with Albumins: Effect of Size, PH, and Temperature.” Archives of Biochemistry and Biophysics 593: 69–79. https://doi.org/10.1016/j.abb.2016.02.015.
  • Steiner, R F. 1984. Principles of Fluorescence Spectroscopy - Lakowicz,Jr. Anal Biochem. Vol. 137. https://doi.org/Doi 10.1016/0003-2697(84)90125-8.
  • Valeur, Bernard. 2001. Molecular Fluorescence Principles and Applications. Wiley-VCH Verlag GmbH. https://doi.org/10.1002/3527600248.
  • Valeur, Bernard, and Mário Nuno Berberan-Santos. 2012. “Handbook of Fluorescence Spectroscopy and Imaging Fluorescence Applications in Biotechnology and Life Sciences Surface Enhanced Raman Spectroscopy Applied and Industrial Photochemistry.”
  • Vera-López, S., P. Martínez, M. P. San Andrés, A. M. Díez-Pascual, and M. Valiente. 2018. “Study of Graphene Dispersions in Sodium Dodecylsulfate by Steady-State Fluorescence of Pyrene.” Journal of Colloid and Interface Science 514: 415–24. https://doi.org/10.1016/j.jcis.2017.12.052.
  • Verkman, A. S. 1987. “Mechanism and Kinetics of Merocyanine 540 Binding to Phospholipid Membranes.” Biochemistry 26 (13): 4050–56. https://doi.org/10.1021/bi00387a046.
  • Yazıcı, Mustafa, İsmail Tiyek, Mehmet Sabri Ersoy, Mehmet Hakkı Alma, Utkay Dönmez, Behzat Yıldırım, Tufan Salan, et al. 2016. “Modifiye Hummers Yöntemi̇yle Grafen Oksi̇t (GO) Sentezi̇ Ve Karakteri̇zasyonu.” Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 4 (2): 41–48. http://dergipark.gov.tr/http-gujsc-gazi-edu-tr/issue/24939/263249.
  • Zaaba, N. I., K. L. Foo, U. Hashim, S. J. Tan, Wei Wen Liu, and C. H. Voon. 2017. “Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence.” Procedia Engineering 184: 469–77. https://doi.org/10.1016/j.proeng.2017.04.118.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Burcu Meryem Beşer 0000-0001-9174-0589

Early Pub Date May 31, 2022
Publication Date June 1, 2022
Submission Date December 21, 2021
Acceptance Date March 25, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Beşer, B. M. (2022). Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi. Journal of the Institute of Science and Technology, 12(2), 870-881. https://doi.org/10.21597/jist.1039599
AMA Beşer BM. Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi. J. Inst. Sci. and Tech. June 2022;12(2):870-881. doi:10.21597/jist.1039599
Chicago Beşer, Burcu Meryem. “Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 870-81. https://doi.org/10.21597/jist.1039599.
EndNote Beşer BM (June 1, 2022) Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi. Journal of the Institute of Science and Technology 12 2 870–881.
IEEE B. M. Beşer, “Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 12, no. 2, pp. 870–881, 2022, doi: 10.21597/jist.1039599.
ISNAD Beşer, Burcu Meryem. “Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology 12/2 (June 2022), 870-881. https://doi.org/10.21597/jist.1039599.
JAMA Beşer BM. Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12:870–881.
MLA Beşer, Burcu Meryem. “Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 870-81, doi:10.21597/jist.1039599.
Vancouver Beşer BM. Floresans Enerji Transferi Üzerine Grafen Oksitin Kuençleştirici Etkisinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12(2):870-81.