Research Article
BibTex RIS Cite

Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi

Year 2022, Volume: 12 Issue: 2, 946 - 956, 01.06.2022
https://doi.org/10.21597/jist.1071939

Abstract

Grafen, tek atom kalınlığındaki karbon nanomateryallerden biri olarak, üstün optik ve elektriksel özelliklerinden dolayı araştırmacılarda büyük ilgi uyandırmaktadır. Boyar maddeler medikal ve teknolojik uygulamalarda sıklıkla kullanılan optik malzemeler olup bu materyaller ile boyar maddeler kullanılarak elde edilen nanokompozitlerin optiksel ve morfolojik karakterizasyonu, optik sensörler, optoelektonik cihazlar gibi potansiyel uygulama alanları için büyük öneme sahiptir. Ksanten türevleri, geniş absorpsiyon ve floresans spektrumları, ışığa karşı dayanıklılıkları, in vivo çalışmalarda düşük toksisiteleri ve suda nispeten yüksek çözünürlük gibi birkaç karakteristik özelliklerinden dolayı nanokompozit eldesinde kullanılabilecek en iyi boyar maddeler arasında yer almaktadır. Bu çalışmada, modifiye edilmiş Hummers yöntemiyle sentezlenen grafenden indirgenmiş grafen oksit (rGO) eldesi gerçekleştirildi. rGO ve ksanten türevi boyar maddeler (Rodamin 101, Floresin ve Eosin Y) ile sulu ortamda yeni kompozitler sentezlendi. Bu kompozitlerin morfolojik ve optiksel özellikleri; X-ışını kırınımı (XRD), Raman spektroskopisi, Fourier dönüşümü kızıl ötesi spektroskopisi (FTIR), UV-görünür spektroskopisi ve durgun-hal floresans spektroskopisi ile aydınlatıldı. Elde edilen kompozitlerin optik ve morfolojik özelliklerine rGO ve boyar madde derişimlerinin etkisi incelenmiştir. Kompozitlerin absorpsiyon spektrumlarında rGO miktarına bağlı olarak çeşitli değişiklikler (batokromik ve hipsokromik kayma, hipoktomik etki gibi) gözlendi. Ayrıca, kompozitlerde rGO miktarı arttırıldığında boyar maddelerin floresans şiddetlerinin etkili bir şekilde sönümlendiği belirlendi.

Supporting Institution

TÜBİTAK

Project Number

1059B141400602

References

  • Akhavan, O., Ghaderi, E. 2012. "Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner". Carbon, 50(5), 1853–1860.
  • Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J. ea, … Stormer, H. L. 2008. "Ultrahigh electron mobility in suspended graphene". Solid state communications, 146(9–10), 351–355.
  • Bozkurt, E., Acar, M., Onganer, Y., Meral, K. 2014. "Rhodamine 101–graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101". Physical Chemistry Chemical Physics, 16(34), 18276–18281.
  • Collison, C. J., O’Donnell, M. J., Alexander, J. L. 2008. "Complexation between Rhodamine 101 and Single-Walled Carbon Nanotubes Indicative of Solvent− Nanotube Interaction Strength". The Journal of Physical Chemistry C, 112(39), 15144–15150.
  • Dave, K., Dhayal, M. 2017. "Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles". Applied Surface Science, 396, 978–985.
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., … Roth, S. 2006. "Raman spectrum of graphene and graphene layers". Physical review letters, 97(18), 187401.
  • Ferrari, A. C., Robertson, J. 2000. "Interpretation of Raman spectra of disordered and amorphous carbon". Physical review B, 61(20), 14095.
  • Fu, C., Zhao, G., Zhang, H., Li, S. 2013. "Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries". Int. J. Electrochem. Sci, 8(5), 6269–6280.
  • Geng, J., Jung, H.-T. 2010. "Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films". The Journal of Physical Chemistry C, 114(18), 8227–8234.
  • Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J. 2012. "One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation". Carbon, 50(7), 2513–2523.
  • Hari, D. P., König, B. 2011. "Eosin Y catalyzed visible light oxidative C–C and C–P bond formation". Organic letters, 13(15), 3852–3855.
  • Koegl, M., Weiß, C., Zigan, L. 2020. "Fluorescence Spectroscopy for Studying Evaporating Droplets Using the Dye Eosin-Y". Sensors, 20(21), 5985.
  • Lakowicz, J. R. 2013. "Principles of fluorescence spectroscopy". Springer science & business media.
  • Li, T., Li, F., Altuzarra, C., Classen, A., Agarwal, G. S. 2020. "Enhanced Two-photon Absorption Fluorescence of Fluorescein Biomarkers Using Squeezed Light Excitation". Içinde CLEO: Applications and Technology (ss. JTh3N-5). Optical Society of America.
  • Liu, W.-W., Chai, S.-P., Mohamed, A. R., Hashim, U. 2014. "Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments". Journal of Industrial and Engineering Chemistry, 20(4), 1171–1185.
  • Morales-Narváez, E., Pérez-López, B., Pires, L. B., Merkoçi, A. 2012. "Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures". Carbon, 50(8), 2987–2993.
  • Morozov, S. V, Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., Geim, A. K. 2008. "Giant intrinsic carrier mobilities in graphene and its bilayer". Physical review letters, 100(1), 16602.
  • Mou, Z., Dong, Y., Li, S., Du, Y., Wang, X., Yang, P., Wang, S. 2011. "Eosin Y functionalized graphene for photocatalytic hydrogen production from water". international journal of hydrogen energy, 36(15), 8885–8893.
  • Muthulingam, S., Lee, I.-H., Uthirakumar, P. 2015. "Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight". Journal of colloid and interface science, 455, 101–109.
  • Neumann, M., Füldner, S., König, B., Zeitler, K. 2011. "Metal‐free, cooperative asymmetric organophotoredox catalysis with visible light". Angewandte Chemie International Edition, 50(4), 951–954.
  • Samanta, M., Mukherjee, M., Ghorai, U. K., Sarkar, S., Bose, C., Chattopadhyay, K. K. 2018. "Ultrasound assisted catalytic degradation of textile dye under the presence of reduced Graphene Oxide enveloped Copper Phthalocyanine nanotube". Applied surface science, 449, 113–121.
  • Şenol, A. M., Onganer, Y., Meral, K. 2017. "An unusual “off-on” fluorescence sensor for iron (III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine". Sensors and Actuators B: Chemical, 239, 343–351.
  • Shen, K., Gondal, M. A., Al-Saadi, A. A., Li, L., Chang, X., Xu, Q. 2015. "Visible light-induced photodegradation of rhodamine dyes over BiOCl, and the vital importance of the frontier orbital energy of the dye molecules in the reaction kinetics". Research on Chemical Intermediates, 41(5), 2753–2766.
  • Şinoforoğlu, M., Gür, B., Arık, M., Onganer, Y., Meral, K. 2013. "Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye". Rsc Advances, 3(29), 11832–11838.
  • Srivastava, S., Senguttuvan, T. D., Gupta, B. K. 2018. "Highly efficient fluorescence quenching with chemically exfoliated reduced graphene oxide". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36(4), 04G104.
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. 2006. "Graphene-based composite materials". nature, 442(7100), 282–286.
  • Wang, L., Park, Y., Cui, P., Bak, S., Lee, H., Lee, S. M., Lee, H. 2014. "Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature". Chemical Communications, 50(10), 1224–1226.
  • Zhang, W., Li, Y., Peng, S. 2016. "Facile synthesis of graphene sponge from graphene oxide for efficient dye-sensitized H2 evolution". ACS Applied Materials & Interfaces, 8(24), 15187–15195.
  • Zhang, X.-F., Liu, S.-P., Shao, X.-N. 2013. "Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 92–99.
  • Zhu, X., Jin, H., Gao, C., Gui, R., Wang, Z. 2017. "Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites". Talanta, 162, 65–71.

Investigation of Spectroscopic Properties of Water-Soluble Graphene / Dye Composites

Year 2022, Volume: 12 Issue: 2, 946 - 956, 01.06.2022
https://doi.org/10.21597/jist.1071939

Abstract

Graphene, as one of single-atom-thick carbon nanomaterial, has recently interested among researchers due to its superior optical and electrical properties. Dyes are frequently used optical materials in medical and technological applications. Optical and morphological characterization of nanocomposites that is obtained by using these materials and dyes have great importance for potential applications such as optical sensors, optoelectronic devices, etc. Xanthene derivatives are one of the best dyes used in obtaining nanocomposits since they have several characteristic features including large absorption and fluorescence, light resistance, low toxicity in-vivo, and relatively high solubility in water. In this work, reduced graphene oxide (rGO)was synthesized with modified Hummers’ method. Novel composites with rGO and xanthene derivative dyes (Rhodamine 101, Florescein and Eosin Y) were synthesized in an aqueous medium. Morphological and optical properties of these composites was confirmed with X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy and steady-state fluorescence spectroscopy. The effect of rGO and dye concentrations on optical and morphological properties of synthesized composites was investigated. Various changes (such as bathochromic and hypsochromic shift, hypochromic effect) were observed in the absorption spectra of the composites depending on the amount of rGO. Also, when amounts of rGO in composites was increased, the fluorescence intensities of dyes were influentially quenched.

Project Number

1059B141400602

References

  • Akhavan, O., Ghaderi, E. 2012. "Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner". Carbon, 50(5), 1853–1860.
  • Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J. ea, … Stormer, H. L. 2008. "Ultrahigh electron mobility in suspended graphene". Solid state communications, 146(9–10), 351–355.
  • Bozkurt, E., Acar, M., Onganer, Y., Meral, K. 2014. "Rhodamine 101–graphene oxide composites in aqueous solution: the fluorescence quenching process of rhodamine 101". Physical Chemistry Chemical Physics, 16(34), 18276–18281.
  • Collison, C. J., O’Donnell, M. J., Alexander, J. L. 2008. "Complexation between Rhodamine 101 and Single-Walled Carbon Nanotubes Indicative of Solvent− Nanotube Interaction Strength". The Journal of Physical Chemistry C, 112(39), 15144–15150.
  • Dave, K., Dhayal, M. 2017. "Fluorometric estimation of amino acids interaction with colloidal suspension of FITC functionalized graphene oxide nanoparticles". Applied Surface Science, 396, 978–985.
  • Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., … Roth, S. 2006. "Raman spectrum of graphene and graphene layers". Physical review letters, 97(18), 187401.
  • Ferrari, A. C., Robertson, J. 2000. "Interpretation of Raman spectra of disordered and amorphous carbon". Physical review B, 61(20), 14095.
  • Fu, C., Zhao, G., Zhang, H., Li, S. 2013. "Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries". Int. J. Electrochem. Sci, 8(5), 6269–6280.
  • Geng, J., Jung, H.-T. 2010. "Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films". The Journal of Physical Chemistry C, 114(18), 8227–8234.
  • Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., Gao, J. 2012. "One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation". Carbon, 50(7), 2513–2523.
  • Hari, D. P., König, B. 2011. "Eosin Y catalyzed visible light oxidative C–C and C–P bond formation". Organic letters, 13(15), 3852–3855.
  • Koegl, M., Weiß, C., Zigan, L. 2020. "Fluorescence Spectroscopy for Studying Evaporating Droplets Using the Dye Eosin-Y". Sensors, 20(21), 5985.
  • Lakowicz, J. R. 2013. "Principles of fluorescence spectroscopy". Springer science & business media.
  • Li, T., Li, F., Altuzarra, C., Classen, A., Agarwal, G. S. 2020. "Enhanced Two-photon Absorption Fluorescence of Fluorescein Biomarkers Using Squeezed Light Excitation". Içinde CLEO: Applications and Technology (ss. JTh3N-5). Optical Society of America.
  • Liu, W.-W., Chai, S.-P., Mohamed, A. R., Hashim, U. 2014. "Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments". Journal of Industrial and Engineering Chemistry, 20(4), 1171–1185.
  • Morales-Narváez, E., Pérez-López, B., Pires, L. B., Merkoçi, A. 2012. "Simple Förster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures". Carbon, 50(8), 2987–2993.
  • Morozov, S. V, Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A., Geim, A. K. 2008. "Giant intrinsic carrier mobilities in graphene and its bilayer". Physical review letters, 100(1), 16602.
  • Mou, Z., Dong, Y., Li, S., Du, Y., Wang, X., Yang, P., Wang, S. 2011. "Eosin Y functionalized graphene for photocatalytic hydrogen production from water". international journal of hydrogen energy, 36(15), 8885–8893.
  • Muthulingam, S., Lee, I.-H., Uthirakumar, P. 2015. "Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight". Journal of colloid and interface science, 455, 101–109.
  • Neumann, M., Füldner, S., König, B., Zeitler, K. 2011. "Metal‐free, cooperative asymmetric organophotoredox catalysis with visible light". Angewandte Chemie International Edition, 50(4), 951–954.
  • Samanta, M., Mukherjee, M., Ghorai, U. K., Sarkar, S., Bose, C., Chattopadhyay, K. K. 2018. "Ultrasound assisted catalytic degradation of textile dye under the presence of reduced Graphene Oxide enveloped Copper Phthalocyanine nanotube". Applied surface science, 449, 113–121.
  • Şenol, A. M., Onganer, Y., Meral, K. 2017. "An unusual “off-on” fluorescence sensor for iron (III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine". Sensors and Actuators B: Chemical, 239, 343–351.
  • Shen, K., Gondal, M. A., Al-Saadi, A. A., Li, L., Chang, X., Xu, Q. 2015. "Visible light-induced photodegradation of rhodamine dyes over BiOCl, and the vital importance of the frontier orbital energy of the dye molecules in the reaction kinetics". Research on Chemical Intermediates, 41(5), 2753–2766.
  • Şinoforoğlu, M., Gür, B., Arık, M., Onganer, Y., Meral, K. 2013. "Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye". Rsc Advances, 3(29), 11832–11838.
  • Srivastava, S., Senguttuvan, T. D., Gupta, B. K. 2018. "Highly efficient fluorescence quenching with chemically exfoliated reduced graphene oxide". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 36(4), 04G104.
  • Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. 2006. "Graphene-based composite materials". nature, 442(7100), 282–286.
  • Wang, L., Park, Y., Cui, P., Bak, S., Lee, H., Lee, S. M., Lee, H. 2014. "Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature". Chemical Communications, 50(10), 1224–1226.
  • Zhang, W., Li, Y., Peng, S. 2016. "Facile synthesis of graphene sponge from graphene oxide for efficient dye-sensitized H2 evolution". ACS Applied Materials & Interfaces, 8(24), 15187–15195.
  • Zhang, X.-F., Liu, S.-P., Shao, X.-N. 2013. "Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 92–99.
  • Zhu, X., Jin, H., Gao, C., Gui, R., Wang, Z. 2017. "Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites". Talanta, 162, 65–71.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Gökhan Güven Batır 0000-0001-9568-5767

Mustafa Arık 0000-0001-5788-4466

Project Number 1059B141400602
Early Pub Date May 31, 2022
Publication Date June 1, 2022
Submission Date February 11, 2022
Acceptance Date March 31, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Batır, G. G., & Arık, M. (2022). Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 12(2), 946-956. https://doi.org/10.21597/jist.1071939
AMA Batır GG, Arık M. Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. June 2022;12(2):946-956. doi:10.21597/jist.1071939
Chicago Batır, Gökhan Güven, and Mustafa Arık. “Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 12, no. 2 (June 2022): 946-56. https://doi.org/10.21597/jist.1071939.
EndNote Batır GG, Arık M (June 1, 2022) Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 12 2 946–956.
IEEE G. G. Batır and M. Arık, “Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 12, no. 2, pp. 946–956, 2022, doi: 10.21597/jist.1071939.
ISNAD Batır, Gökhan Güven - Arık, Mustafa. “Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 12/2 (June 2022), 946-956. https://doi.org/10.21597/jist.1071939.
JAMA Batır GG, Arık M. Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12:946–956.
MLA Batır, Gökhan Güven and Mustafa Arık. “Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 12, no. 2, 2022, pp. 946-5, doi:10.21597/jist.1071939.
Vancouver Batır GG, Arık M. Suda Çözünebilir Grafen/Boyar Madde Kompozitlerinin Spektroskopik Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12(2):946-5.